
Combined Active and Semi-Supervised Learning
using Particle Walking Temporal Dynamics

Fabricio Breve
Institute of Geosciences and Exact Sciences (IGCE)

São Paulo State University (UNESP)
Rio Claro, Brazil

Email: fabricio@rc.unesp.br

Abstract—Both Semi-Supervised Leaning and Active Learning
are techniques used when unlabeled data is abundant, but the
process of labeling them is expensive and/or time consuming. In
this paper, those two machine learning techniques are combined
into a single nature-inspired method. It features particles walking
on a network built from the data set, using a unique random-
greedy rule to select neighbors to visit. The particles, which have
both competitive and cooperative behavior, are created on the
network as the result of label queries. They may be created
as the algorithm executes and only nodes affected by the new
particles have to be updated. Therefore, it saves execution time
compared to traditional active learning frameworks, in which the
learning algorithm has to be executed several times. The data
items to be queried are select based on information extracted
from the nodes and particles temporal dynamics. Two different
rules for queries are explored in this paper, one of them is
based on querying by uncertainty approaches and the other is
based on data and labeled nodes distribution. Each of them
may perform better than the other according to some data sets
peculiarities. Experimental results on some real-world data sets
are provided, and the proposed method outperforms the semi-
supervised learning method, from which it is derived, in all of
them.

I. INTRODUCTION

Semi-Supervised Learning is a class of machine learning
techniques which focus on problems where there are lots of
easily acquired unlabeled data, but the process of labeling
them is often expensive, time consuming, and/or requires the
work of human specialists [1]–[3]. It is pathway between
Supervised Learning and Unsupervised Learning. Supervised
Learning methods use only labeled data in their training
process, no information is taken from unlabeled data. On
the other hand, Unsupervised Learning methods use all data
items but any label information is wasted. Semi-Supervised
Learning methods are able to take advantage of both labeled
and unlabeled data in order to build better classifiers.

Active Learning is also a form of machine learning. The
methods in this class are able to interactively query an human
specialist (or any other kind of information source) in order to
obtain the labels of selected data points. The key idea behind
active learning is that a machine learning algorithm can achieve
greater accuracy with fewer training labels if it is allowed to
choose the data from which it learns [4], [5]. Active learning
is also useful on problems where unlabeled data is abundant,
but labeling them is difficult.

Therefore, semi-supervised learning and active learning
methods share this predilection of making the most of un-

labeled data. But there are also some differences. While semi-
supervised learning methods exploit what the learners think
they know about the unlabeled data, active learning methods
attempt to explore unknown aspects [5]. For instance, semi-
supervised learning methods often propagate labels through
similar data points, or label the data which it has more
confidence, and then retrain the algorithm with those new
labeled data. On the other hand, active learning methods may
query labels of the nodes they have least confidence, and then
retrain the algorithm with those new labeled nodes as well.
Another example: co-training semi-supervised methods relies
on committees agreements, while query by committee active
learning methods rely on committees disagreements [4].

Active Learning algorithms are usually split in categories
according to how they choose which data points should have
their labels queried. Some of the most common approaches
includes: uncertainty sampling, in which the algorithms query
the labels of data points in which they have less confidence
[6]–[9]; querying by committee, category in which a variety of
models are trained on the current labeled data, and then query
for the labels of the data points in which they disagreed the
most [10]–[12]; expected model change, in which algorithms
query the labels of the instances that would lead to the greatest
changes in the current model [13]; expected error reduction,
in which algorithms query data points that lead to the largest
decrease in the expected error [14], [15]; expected output
variance reduction, which consists in labeling those points that
would minimize output variance [16]; and density-weighted
methods, in which the data density information is used to
choose the data points to be queried [13], [17].

Semi-supervised learning methods are also usually ar-
ranged in categories, like generative models [18], [19], cluster-
and-label techniques [20], [21], co-training and tri-training
techniques [22]–[25], low-density separation models [26], and
graph-based methods, which is the most active category in the
recent years. It includes methods like Mincut [27], Local and
Global Consistency [28], some label propagation techniques
[29], [30], Particle Competition and Cooperation [31], among
others.

In the Particle Competition and Cooperation method, a
network is built from the data set using the Euclidean distance
among data items. Particles then walk in the network trying to
dominate its nodes. Particles are organized in teams. Each team
represents a problem class. The competition takes place among
particles of different teams, while particles from the same team
cooperate with each other. Labels are spread as particles move



from node to node. Particles have both exploratory and defen-
sive behavior, and they alternate between them. Exploratory
behavior is used to propagate their labels to unlabeled nodes,
while the defensive behavior is used to keeps particles close
to nodes already dominated by their team. The particles start
from the labeled nodes, which are pre-defined according to the
pre-labeled data points. There is no retraining process. Particles
quickly dominate the unlabeled nodes which are closer to their
respective labeled node, but there is usually a tough dispute for
the nodes on frontier regions, or even dense regions without
labeled nodes. Thus, classification performance could increase
if the algorithm was able to query the labels of specific nodes
in those regions.

In this paper, the particle competition and cooperation
method [31] is extended to combine both semi-supervised and
active learning features. The new method may use as few
as a single pre-labeled node per class to start. A particle is
generated for each labeled node. Then, the algorithm dynami-
cally chooses nodes to have their labels queried. New particles
are generated on the fly as new labels are provided, so the
algorithm does not have to be restarted. Therefore, it is usually
much faster than methods that require retraining after new
queries. Moreover, only nodes affected by new particles will
be changed, so the network quickly reaches a new equilibrium
state after new queries.

Two different rules for querying the chosen unlabeled
nodes are explored in this paper. The first rule is inspired on
querying by uncertainty approaches. It uses temporal nodes
domination information in order to select nodes that were the
target of most disputes over time. The second rule is based
on nodes distribution in the network. It uses network data
distribution information, dynamically collected by the nodes as
they walk, in order to select nodes that are far away from any
labeled node. Those nodes are more susceptible to wrong label
propagation. A single labeled node among them may avoid this
problem. In problems with overlapping classes or outliers, it
may be better to concentrate on dense regions without labeled
nodes instead of the border nodes. The simulations reveal that
each rule may perform better than the other according to some
data sets peculiarities.

The remaining of this paper is organized as follows.
The proposed model is described in section II. In Section
III, computer simulation results are presented. Finally, some
conclusions are drawn on Section IV.

II. MODEL DESCRIPTION

The proposed model uses particle competition and coop-
eration in undirected and non-weighted networks, which are
built from the data set. A particle is generated for each labeled
data item. Particles with the same label form a group, called
team. Teammates act cooperatively to dominate nodes of the
network. Different teams compete against each other to prevent
rivals from entering the nodes they have dominated. Particles
jump from node to node in order to increase their domination
on them, but they are expelled when the selected node is
dominated by another team. Particles may lose or gain strength
as they walk, depending on the domination levels of the visited
node.

The network is built from the data set χ =
{x1, x2, . . . , xl, xl+1, . . . , xn} ⊂ Rm, with the corresponding
label set L = {1, 2, . . . , c}. The first l points xi(i ≤ l) are
labeled, yi ∈ L. The remaining points xu(l < u ≤ n) are
left unlabeled, yu = ∅. An undirected graph G = (V,E) is
created, in which V = {v1, v2, . . . , vn} is the set of nodes, and
E is the set of edges (vi, vj). Each node vi corresponds to a
data point xi. Two nodes vi and vj are connected if vj is among
the k-nearest neighbors of vi, or vice-versa. The Euclidean
distance is used. Otherwise, vi and vj are disconnected. For
each network node vi ∈ {v1, v2, . . . , vl}, corresponding to a
labeled data point xi ∈ {x1, x2, . . . , xl}, there is a particle
ρi ∈ {ρ1, ρ2, . . . , ρl} which initial position is vi. The algorithm
needs at least one labeled node per class to start. Then, as the
algorithm queries for node labels, new particles are generated
for the new labeled nodes.

Each particle ρj has two variables. The first one is ρωj (t) ∈
[0, 1]. It holds the particle strength, which defines how much
the particle can change a node level at time t. The second vari-
able is a distance table ρdj (t) = {ρd1

i (t), ρd2
i (t), . . . , ρdn

i (t)}.
Each element ρdi

j (t) ∈ [0 n − 1] holds the distance dynam-
ically measured between the particle corresponding node and
node vi. Each particle ρj is created with its initial position
set to its corresponding labeled node and its initial strength
set to maximum, ρωj (0) = 1. Particles start knowing only the
distance to their corresponding labeled nodes, which is set to
zero (ρdi

j = 0). Other distances are set to the largest possible
value (ρdi

j = n− 1).

Each node vi has a domination table vω
i (t) =

{vω1
i (t), vω2

i (t), . . . , vωc
i (t)}. Each element vωℓ

i (t) ∈ [0, 1] cor-
responds to the domination level from team ℓ over node vi. The
sum of the domination levels in each node is always constant,∑c

ℓ=1 v
ωℓ
i = 1. Domination levels are fixed for labeled nodes

and variable for unlabeled nodes. Labeled nodes are always
fully dominated by their corresponding team. Unlabeled nodes
have their domination levels changed as particles select them
to visit. Therefore, for each node vi, the domination table vω

i
is initially set as follows:

vωℓ
i (0) =

 1 if yi = ℓ
0 if yi ̸= ℓ and yi ∈ L
1
c if yi = ∅

. (1)

Each node vi also has a long term domination table
vλ
i (t) = {vλ1

i (t), vλ2
i (t), . . . , vλc

i (t)}. Each element vλℓ
i (t) ∈

[0 ∞] corresponds to long term domination level by team
ℓ over node vi. Long term domination levels can vary from
zero to infinity and they never decrease. Therefore, all long
term domination levels vλℓ

i (0) have their initial values set to
zero, for all the classes ℓ no matter if the corresponding data
item is labeled or unlabeled [32]. After each query, long term
domination levels are reset.

At each iteration, each particle ρj chooses a node vi from
the neighbors of its current node. It will try to visit the selected
node, which will be called target node from now on. There are
two rules to select the target node. The random rule and the
greedy rule. At each iteration, the particle randomly selects
one of them with equal probabilities. Then, if the random
rule is selected, the probabilities of the particle ρj choosing a



neighbor vi are defined equally to each neighbor:

p(vi|ρj) =
Wqi∑n

µ=1 Wqµ
, (2)

where q is the index of the current node of particle ρj , so
Wqi = 1 if there is an edge between the current node and
any node vi, and Wqi = 0 otherwise. On the other hand, if
the greedy rule is selected. The probabilities of the particle ρj
choosing a neighbor vi are defined according to the particle
team domination on it, ρωℓ

j , and the inverse of its distance, ρdi
j ,

to the particle initial position, vj , as follows:

p(vi|ρj) =
Wqiv

ωℓ
i (1 + ρdi

j )−2∑n
µ=1 Wqµv

ωℓ
µ (1 + ρ

dµ

j )−2
, (3)

where q is the index of the current node of particle ρj and
ℓ = ρfj , where ρfj is the class label of particle ρj . Notice that
the particle only stays at the target node if its team domination
level is higher than those from all other teams; otherwise, a
shock happens and the particle is expelled, going back to its
previous location until the next iteration.

Each unlabeled node vi selected as a target node has its
domination table updated as follows:

vωℓ
i (t+ 1) =


max{0, vωℓ

i (t)− 0.1ρω
j (t)

c−1 }
if ℓ ̸= ρfj

vωℓ
i (t) +

∑
r ̸=ℓ v

ωr
i (t)− vωr

i (t+ 1)

if ℓ = ρfj

, (4)

where ρfj represents the class label of particle ρj . Each particle
ρj changes the target node vi by increasing the domination
level of its team (vωℓ

i , ℓ = ρfj ) while decreasing the domination
levels of other teams (vωℓ

i , ℓ ̸= ρfj )). Notice that (4) does not
apply to labeled nodes.

Long term domination levels vλℓ
i (t) are updated only when

the random rule is selected, as follows:

vλℓ
i (t+ 1) = vλℓ

i (t) + ρωj (t) (5)

where ℓ is the class label of particle ρj .

Then, particle strength is updated at each iteration, as
follows: ρωj (t) = vωℓ

i (t), where vi is the target node, and
ℓ = ρfj , i.e., ℓ is the class label of particle ρj .

Distance calculation is a dynamical process, so each par-
ticle ρj updates its distance table ρdk

j (t) at each iteration t as
follows:

ρdk
j (t+ 1) =

{
ρdi
j (t) + 1 if ρdi

j (t) + 1 < ρdk
j (t)

ρdk
j (t) otherwise

, (6)

where ρdi
j (t) is the distance from the current node to the

particle initial node, and ρdk
j (t) is the distance from the target

node to the particle initial node.

As new labels are queried, (1) is reapplied to the new
labeled nodes. After the last iteration of the algorithm, each
unlabeled node is labeled after the team which has the highest
domination level on it, i.e., yi = argmaxℓ v

ωℓ
i (t).

The average maximum domination level of the nodes
(⟨vωℓ

i ⟩, ℓ = argmaxq v
ωq

i ) is used to identify when the
algorithm reaches stability. This value does not converge, as
there is always some dispute in the nodes in classes frontiers.
But we may set a stop criterion for when there is no increase
for a fair amount of iterations, usually ≈ 100.n

l , where n is
the network size and l is the current amount of particles in the
network. When the system reaches stability, it is time to query
for another node label, generating a new particle to the new
labeled node. This procedure is repeated until the specified
amount of labeled nodes is reached. Then, the same criteria
may be used to finish the algorithm, extracting the final labels.

There are two different rules to choose which node will
have its label queried. Rule A uses temporal node domination
information to select the unlabeled node which had more
dispute over time, which may be understand as the node the
algorithm has less confidence on the label it is currently as-
signing. Rule B chooses the unlabeled node which is currently
more far away from any labeled node, according to particles
dynamic distance tables.

In order to select the network node which was most
disputed over time at any given time (Rule A), each node
dispute level (or uncertainty) is calculated as follows:

ui(t) =
vλℓ∗∗
i (t)

vλℓ∗
i (t)

, (7)

where vλℓ∗
i (t) = argmaxℓ v

λℓ
i (t), vℓ∗∗i (t) =

argmaxℓ,ℓ ̸=vℓ∗
i

(t) v
λℓ
i (t), and ui ∈ [0 1], where ui = 0

means completely confidence in the label given to a node,
while ui = 1 means the node label is completely undefined
among two or more classes. Then, the unlabeled node which
was most disputed over time (most uncertain label) is defined
using:

q(t) = arg max
i,yi=∅

ui(t). (8)

Notice that all long term domination tables are redefined after
each query, otherwise older disputes that no longer take place
would influence the next query.

In order to select the node which is more far away from
any labeled node (Rule B), the dynamic distance from each
node to its closest labeled node, as taken by the particles, is
calculated:

si(t) = min
j

ρdi
j (t). (9)

Then, the unlabeled node which is more far away from any
labeled node is defined using:

q(t) = arg max
i,yi=∅

si(t). (10)

III. COMPUTER SIMULATIONS

In order to show the effectiveness of the proposed method,
some simulations are executed using some real-world data
sets. In each simulation, the correct classification rate obtained
by the original particle competition and cooperation method
(PCC) [31] is compared with those achieved by the proposed
method using both rules individually (ASL-PCC A and ASL-
PCC B). The following parameters were fixed for the PCC
method: pgrd = 0.5 and ∆v = 0.1. For the three methods,



k = 5 is fixed, i.e., each node is connected to its 5 near-
est neighbors. These are optimal or near optimal parameter
values for most data sets. They were obtained by empirical
optimization using the grid method.

The PCC method is executed using 1% to 10% data items
randomly chosen to be pre-labeled, as it requires. On the
other hand, for both versions of ASL-PCC, we randomly
choose only one data item per class to be pre-labeled. The
remaining labeled samples are obtained through queries made
each time the algorithm reaches stability. This is repeated until
the defined amount of labeled items (1% to 10%) is reached.
Notice that for Iris and Wine data sets (Figures 1a and 1b),
simulations with only 1% and 2% labeled nodes are skipped,
as only one labeled node per class would already pass the 2%
mark, leaving no room for queries. Each point in the graphics
from Figures 1a to 2d is the average of 100 executions with
different pre-labeled nodes.

Figures 1a to 2d shows the classification performance
comparison when the methods are applied to 8 different data
sets. In all cases, the proposed method works better than the
original PCC, with at least one rule. Rule A is the best on half
of the cases and Rule B is the best on the other half. Moreover,
in half of the cases, the proposed method is better no matter
which rule is selected, while in the other half it requires the
selection of the more adequate rule.

Rule A works better in data sets where the classes are well
separated and there are not many outliers, because in these
cases the dense regions are easily classified and the uncertainty
is mostly in frontier regions. Rule B, on the other hand, usually
works better when the classes are not well defined and/or
there are outliers, because in these cases the labeled nodes
are sparsely distributed.

IV. CONCLUSIONS

In this paper, semi-supervised learning and active learning
features are combined into a single approach, thus a new
classification method is proposed. It is inspired on the collec-
tive behavior of social animals, which protect their territories
against intruding groups. Networks are built from the data sets
and particles, representing labeled nodes, walk from node to
node choosing the next node through an unique random-greedy
rule. Particles compete against particles from other groups in
order to dominate network nodes, expanding their territory and
preventing invasion from other particles. On the other hand,
particles from the same group act cooperatively and share their
territory.

Most active learning methods requires an explicit retraining
process in order to incorporate new label information, resulting
from queries. The proposed method does not require retraining.
New particles are created on the fly as unlabeled nodes become
labeled nodes. The algorithm naturally adapts itself to the
new situation. Only nodes affected by the new particles are
updated, and an equilibrium state is quickly achieved again,
saving execution time.

Two different rules for selecting unlabeled nodes to be
queried are explored in this paper. The first one is inspired
on querying by uncertainty approaches. Temporal nodes dom-
ination information is used to select nodes that were the

target of most disputes over time. This rule is better to define
frontiers in problems where classes are fairly well separated
and there are not many outliers. The second rule is based
on the nodes distribution in the network. Data distribution
information is dynamically collected by the nodes as they
walk. Nodes are selected based on how far they are from
any labeled node, since those nodes are more susceptible to
wrong label propagation. This approach works better in data
sets where classes have some highly overlapped regions and/or
many outliers. It addresses the problem of querying outliers,
commonly found on querying by uncertainty approaches [15],
[27].

Some real-world data sets are used in order to measure the
performance of the proposed method. In all cases, it performs
better than the semi-supervised learning approach from which
it was inspired, at least when the correct querying rule is
selected. Unfortunately, when the data set is unknown, there
may be no clue on which querying rule would work better.
In future works, this problem may be addressed through the
analysis of the network structure together with the labeled
nodes position in the network. Moreover, the querying rule
could be switched on the fly based on temporal information,
such as new queried labels and new labeled nodes distribution.
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Fig. 2. Correct classification rate and standard deviation comparison when the methods are applied varying the amount of labeled nodes in the following data
sets: (a) COIL2; (b) BCI [2]; (c) g241c [2]; and (d) COIL [2].
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