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Abstract—Performance indicators are critical resources for 
quality control in the software development process. Over time, 
the data volume of the historical basis these indicators increase 
significantly. Moreover, the diversity of treatment (individual or 
group) and the frequency of data collection hamper the analysis. 
The time and reliability of these analyzes are important to 
support a faster and more effective decision. Thus, this paper 
proposes the use of artificial neural networks with semi-
supervised learning to analyze the historical basis of performance 
indicators. In order to support the sample labeling process it is 
recommended to use information visualization techniques. An 
indicator reference model was defined based on the software 
process reference model MPS for Software  (MPS-SW) to be used 
before the labeling process. 

Keywords—Software Processes, performance indicators, 
machine learning, artificial neural network, MPS-SW. 

 

I. INTRODUCTION 
During a software development, procedures for quality 

control aim to identify ways to mitigate causes of 
unsatisfactory results. Furthermore, these procedures also allow 
to evaluate the performance of the processes and to indicate the 
need for changes and corrections on the process [1], [2]. 
Specific project results must be monitored to determine if they 
are in compliance with the quality criteria previously defined 
and which are relevant to the development of the software. 
Statistical techniques have helped the evaluation of the results 
of quality control. 

The performance indicators are important tools to the 
quality control in general. These indicators aid to quantify the 
performance of activities, processes and products, making it 
possible to analyze the results and compare them to the planned 
goals [3]. The indicators provide numerical relations that 
reflect the current state of the processes. These relations 
provide information for decision-making related to the 
processes, and consequently, to their own business. The 
performance indicators can present variations that require the 
management’s attention when making a decision. It is possible 

to evaluate the variations that occurred and generate prognostic 
(projections) through historical comparisons of an indicator. 

The performance indicators might be analyzed either 
individually or in groups, depending on the defined 
specifications to support the decision-making. These groupings 
can also consider distinct indicators from different projects or 
products, or consider the same indicator that comes from 
different projects or products. The analyses are performed 
continuously during the software development process, in 
order to create a historical basis and judge the quality of the 
software during the whole process [2].  

However, the historical basis of the performance indicators 
tends to become large and complex That happens because   of 
the large amount of data that is stored at the same time and the 
intrinsic diversity of  the indicators (different types, granularity 
and frequency of data collection). Furthermore, the data 
volume that is produced by these indicators tends to increase 
dramatically over the monitoring time. All these factors require 
a solution that enables the analysis of performance indicators, 
improving the use of these indicators in the software 
development process.  

Within this context, this paper proposes the use of semi-
supervised machine learning techniques for analysis of 
performance indicators in software development processes. 
This type of learning reduces the cost with labeling process of 
supervised learning and does not despise the labels of samples, 
it could happen in the unsupervised learning. 

The goal is to "teach" (to train) an Artificial Neural 
Network (ANN) to recognize the existing patterns in the large 
volume of the historical data generated by the indicators. Thus, 
the ANN will be able to analyze the indicators in different 
development processes and provide results that indicate the 
status of a particular situation, similar to a traffic light. Overall, 
an ANN can analyze indicator groups simultaneously, with 
different complexities. This allows the indicator groups to be 
controlled in dashboards. The same goes for individual 
indicators. The same goes for individual indicators. This 
technique is able to provide a decision-making more effective 



and faster. 
Therefore, the section II presents an overview of machine 

learning and ANN. The section II outlines the semi-supervised 
learning algorithm for analysis of performance indicators: 
Particle Competition and Cooperation (PCC). 

ANNs have been used for treatment of performance 
indicators in different applications of Software Engineering. 
The section IV presents a few comments about it and discusses 
some criteria for the use of ANNs in software development 
processes. 

On the other hand, the section V outlines an indicator model 
based on processes levels G and F of reference model MPS for 
software (MPS-SW). This model will help to guide the 
grouping of indicators in software development organizations. 

The section VI shows the application of the PCC algorithm 
on a real set of performance indicator samples. These 
indicators belong to the historical basis of a company that 
develops software, that is a project partnership and certified in 
the level G on the model MPS-SW. The results of PCC 
application are compared with the results that have been 
obtained in two supervised ANN techniques. There was no 
comparison with unsupervised methods, because this type of 
learning ignores the information of the sample labels - and this 
information is fundamental for the type of problems presented. 
The final considerations of this article are presented in section 
VII. 

 

II. MACHINE LEARNING AND ARTIFICIAL NEURAL NETWORK 
Within the context of artificial intelligence, machine 

learning is an area that involves the construction of systems 
capable of acquiring knowledge automatically. This area 
considers the development of algorithms that use the acquired 
"experience" to produce results without human intervention. A 
machine learning algorithm can make decisions based on 
examples of input data [4]. 

Overall, machine learning algorithms require the analysis 
of a large amount of samples for learning. The idea is to teach 
the algorithms to solve different problems in a given context. 
This context may have characteristics that cause changes over 
time and/or the type of application and use [5].  

ANN is a type of machine learning techniques, which is 
discussed in subsection A. There are different machine learning 
categories, each one recommended for a particular type of 
problem. The subsection B presents three categories: 
supervised, unsupervised and semi-supervised. 

A. Artificial Neural Network (ANN) 
ANNs are computational techniques based on mathematical 

models inspired by the neural structure of intelligent 
organisms. The acquisition of knowledge in ANNs is 
performed through experience [6]. They have the ability to 
learn by examples, making inferences from that learning and 
improving their performance gradually. 

ANN has a behavior based on groups of neurons in the 
human brain, which receive and transmit information through 
the dendrites and axons, respectively [7]. When a specific set 
of data inputs and their outputs are presented with an ANN, it 

is able to auto adjust its synaptic weights. The adjustment of 
the connections is obtained by learning adopting as training 
criterion (and subsequent analysis) a specific activation 
function. The training phase of ANNs consists in a functional 
relationship mapping that exists between the inputs and 
outputs. Following training, the network should be able to 
generalize the behavior of the process at the time when other 
inputs are presented to it (different inputs from those used 
during training) [8]. 

ANNs can be used for performance evaluation indicator 
groups of software engineering processes, as proposed in this 
paper. Indicators are considered the network attributes and 
have different measurement value and goals, without a pattern 
in data types defined (may contain integer, boolean or real 
values). Therefore, a software factory can "teach" how certain 
indicator groups can express control targets, adjusting its 
parameters on demand. 

B. Machine Learning categories 
A supervised learning algorithm requires that an expert 

(external entity) introduce some sets of patterns for the inputs 
and the corresponding standards for the outputs (results). An 
output can be a numeric value or can predict a class label for 
the input object. In the training phase of an ANN, for example, 
the expert indicates explicitly for each input if the output 
response is good or bad (data labeling process). Thus, the result 
provided by the network is compared to the expected answer. If 
the result is different than expected, an error is reported to the 
network and adjustments need to be made in order to improve 
future responses. 

Unsupervised learning algorithms do not require an 
external entity to perform the training process. They aim to 
determine how the data is organized only based on the input 
patterns, without labels or output values. These algorithms 
process the inputs available and try to establish internal 
representations to encode features and classify them 
automatically, by detecting the singularity in the input samples. 

Semi-supervised learning algorithms use both labeled and 
unlabeled data for training. In many cases, the use of few 
labeled data with many unlabeled data considerably improves 
accuracy of the learning [9]. 

Due to the large amount of existing databases, label data for 
supervised learning algorithms have become an increasingly 
unworkable process. Usually, the labeling process is expensive 
and time consuming, requiring intense involvement of human 
experts. On the other side, the unsupervised algorithms ignore 
valuable information label of the data items. Semi-supervised 
algorithms can mitigate these problems: a few labeled data 
items are combined with a large amount of unlabeled data, 
producing better classifiers [10]. 

 

III. ALGORITHM ANN SEMI-SUPERVISED ADOPTED 
The selected algorithm to propose a treatment for 

performance indicators in this paper is called Particle 
Competition and Cooperation (PCC) [9].This semi-supervised 
ANN algorithm was chosen because it requires little human 
effort and consequently little financial cost. 



 
The PCC algorithm consists of a graph of related networks, 

which has various particles moving through the network. These 
particles are organized in the form of teams, where particles of 
the same team go over the network in a cooperative way in 
order to propagate their labels. Meanwhile, particles of 
different teams compete with each other to determine the 
borders of the class, and reject intrusive particles. 

Traditionally, labels are spread over the network in a global 
way in other semi-supervised learning algorithms based on 
graphs. This means that the information is propagated from all 
nodes to all other nodes for each iteration of the algorithm, 
accordingly to the respective edge weights. On the other hand, 
the spread of the label occurs locally at the PCC algorithm. 
Therefore, each step of the algorithm, every particle propagates 
its label to a selected neighbor by the rule "random1-greedy2". 
Thus, each particle visits only a portion of the nodes that 
potentially belongs to its team (subnet), preventing from 
redundant operations are carried out [9]. 

Breve [10] presents a metaphor of particles based on ant 
behavior (Fig. 1) to explain the PCC algorithm. 

 

 

  
Fig 1. Metaphor based on behavior ant [10]. 

 

Every node on the network has an array of elements, 
responsible for representing a level of particles each team. 
Initially, the input data set is transformed into a non weights 
and undirected network, where each node corresponding to a 
non-labeled sample will have its field level configured with the 
same value , where c = number of classes / teams. The Fig. 2 
(a) explains the initial situation with four classes, ie, nodes not 
labeled with domain levels 0.25: [0.25 0.25 0.25 0.25]. Next, a 
set of ants are placed on the network. Each of them is a labeled 
data item that is set to the highest value. The Fig. 2 (b) 
illustrates this situation to the four classes labeled as Class A: 
[1 0 0 0]. The subset of particles with the same label is called 
"team" [9]. 

                                                             
1Random walk: each particle chooses any neighbor to visit at random, without 
worrying about the domination levels or distance from it home node. It is a 
movement for acquisition of new node and exploration [9]. 
2Greedy walk: each particle visits the nodes that are closest to their home 
nodes, especially those who are already dominated by its own team. It is a 
movement to defend the territory of his team [9]. 

 

         
                         (a)                   (b) 

Fig. 2. Initial domination level: (a) unlabeled sample; (b) labeled sample. 

 
Every ant chooses a neighboring node to visit each iteration 

of the algorithm, using the "random-greedy" rule. The domain 
level of their team is increased when an ant selects a 
neighboring node. Meanwhile, domain levels of other teams 
are decreased. If the node to be visited is in control of its own 
team, the ant gets stronger, increasing their domain levels. 
However, the ant weakens if the visited node is domain of the 
other team. Each ant works prioritizing the domain of their 
respective neighborhoods (neighboring nodes). For this, they 
have a particular node as home and each ant keeps information 
of the distance between their respective homes and other 
network nodes. This method includes cooperation between the 
ants. Thus they prioritize helping their teammates with their 
neighborhoods, and eventually try to invade opponents’ 
territories. Each team tries to dominate the largest possible 
number of nodes, and simultaneously try to avoid the invasion 
of ants from other teams. At the end of the iterative process, 
each unlabeled data item will be labeled according to the 
team's label which contains the highest domain level. 
 

IV. ARTIFICIAL NEURAL NETWORK APPLIED TO 
PERFORMANCE INDICATORS 

Machine learning techniques have been used with 
performance indicators in different areas of knowledge. Melo 
et al. [11] used an ANN Multilayer Perceptron (MLP) to 
predict the variation in the flow of vehicles on roads, helping 
drivers to selecting the best routes. Neto, Nagano and Moraes 
[12] used an unsupervised ANN to classify agricultural 
cooperatives based on their socioeconomic indicators. 
Cattinelli et al. [13] used an ANN to analyze groups of 
performance indicators in 109 hemodialysis clinics in Italy, 
Portugal and Turkey. Within the context of Software 
Engineering, Kutlubay et al. [14] used ANN techniques for 
detecting defects in software products.  

In this way, this paper proposes the use of PPC algorithm 
(see section III) for an ANN with semi-supervised learning for 
quality control during software development. This proposal has 
a cost of labeling data up to 20% - which is considered low 
cost. However, it will allow the development of tools that will 
automate the monitoring processes effectively and efficiently. 
The reliability of the labeling process can be aided with 
information visualization techniques. It is recommended the 
LSP techniques (Least Squares Projection) and parallel 
coordinates. 

Overall, the software processes and the performance 
indicators are defined for any different software developer 
organization. Thus, an indicator model was created to guide the 
grouping of performance indicators before using an ANN. This 



model will serve as a reference to the initial work of selection 
and categorization of the indicators in the organization before 
the labeling process, as shown in section V. 

 

V. SOFTWARE PROCESS REFERENCE MODEL FOR 
PERFORMANCE INDICATORS 

As software organizations have specific indicators and 
processes, the processes included in the MPS-SW quality 
model were considered as reference for this work. Initially, 
seven processes are being considered as levels G and F models. 
The largest numbers of certified software organizations are in 
these two maturity levels (almost 90% of the certifications). An 
overview of this model is presented in the subsection A. 

The subsection B presents an indicator model based on the 
processes of the maturity levels G and F of the MPS-SW 
model, to support the selection and clustering of indicators 
before the application of the ANN. The company’s real 
indicators may be converted to the MPS-SW model indicator. 
However, not all model indicators can be converted into real 
indicators. 

A. MPS-SW model 
The software MPS-SW model is part of Brazilian Software 

Process Improvement Program (MPS.BR) created in 2003. 
This model is based on ISO / IEC 12207 (software lifecycle) 
and ISO / IEC 15504 (software evaluation). Currently there is 
an agreement between the Software Engineering Institute (SEI) 
and the Association for Promoting the Brazilian Software 
Excellence (SOFTEX) for joint assessment and certification of 
MPS-SW models and CMMI-DEV [17]. The MPS-SW model 
is designed to benefit mainly micro, small and medium 
software enterprises (MSME). 

The MPS-SW model has seven maturity levels aiming a 
gradual implementation and certification from the first level: 
G. This maturity level includes two critical software processes 
for MSME: Requirements Management and Project 
Management. On each level are added new processes, as 
shown in TABLE I. This means that a higher level involves its 
processes more the processes from the lower levels. The 
highest level, A, involves all processes from the lower levels 
and emphasizes the continuity of the improvement in processes 
[18]. 
 

TABLE I.  PROCESSES ADDED TO EACH MATURITY LEVEL (ML) OF 
THE MPS-SW [18]. 

ML PROCESSES 
A (no new processes are added) 
B Project Management (new outcomes) 
C Decision Management; Risk Management; Development for Reuse 
D Requirements Development; Product Design and Construction; 

Product Integration; Verification and Validation 
E Human Resources Management; Process Establishment; Process 

Assessment and Improvement; Project Management (new 
outcomes); Reuse Management 

F Measurement; Configuration Management; Acquisition; Quality 
Assurance; Project Portfolio Management 

G Requirements Management; Project Management 

The utilization of performance indicators is required for the 
process from level F - that is kept up to level A. However, a 
good practice is to adopt performance indicators from level G. 

B. Reference model for indicators 
A business ontology was developed by Pizzoleto [16] 

organizing the levels G and F of the MPS-SW model. This 
ontology proposed performance indicators for almost all the 
expected results in the processes. Fig. 3 shows the Protégé 
system screen with part of the measurements process of the F 
level, as described in the ontology. 

Using this ontology, interviews in MPS-SW certified 
software companies were held. Based on literatures on 
performance indicators in Software Engineering, such as [19], 
[20], [21] and [22], an indicator model has been developed for 
the processes of the levels G and F. Fig. 4 shows the indicator 
model with the following attributes: description, purpose, 
calculation method, measure unit, collection frequency, results 
presentation frequency and scope application (project, product 
and business). 

 

 

 
Fig.3. Measurement process from the MPS-SW ontology in the Protégé 

system [19]. 
 

 
 

 
Fig. 4. Representation of the reference model of performance indicators. 

 

A group indicator model was defined based on four 
perspectives of the Balanced Scorecard strategy (BSC): 
Financial, Customer, Internal business processes, and Learning 



 

and growth. These perspectives reflect the vision and 
organizational strategy of a company [23]. The proposal was to 
associate the indicators used in the model presented in Fig. 4 
with the categories of BSC perspectives. Fig. 5 illustrates some 
of these indicators associated with each view. This model 
supports the software organization to form sets of indicators to 
the process of  labeling and training of ANN. The output result 
for each perspective will be the "status" of the analyzed set of 
indicators.  
 
 

 
Fig. 5. Indicators groups based on the BSC perspectives with three possible 

outputs. 

 

VI. RESULTS 
In order to evaluate the use of ANNs on analysis of 

performance indicators in software processes, experiments 
were performed with two different types of learning: 
supervised and unsupervised. Two algorithms of ANN 
supervised that are well-known in the literature were selected: 
Multilayer Perceptron (MLP) and K-Nearest Neighbor (KNN). 
The intention was to compare the results with the PCC 
algorithm, presented in section III. 

A real indicators database used in software processes was 
applied as an input to the ANN. These indicators were chosen 
from the reference model of the proposed indicators in section 
V. The data were obtained from a company certified in level G 
of MPS-SW model. This company, a partner of the project, 
develops software for public management. The subsection A 
provides more information about the database used. 

The output classification was made using very simple 
criteria, similar to a traffic light, as shown in Fig. 6. In this 
metaphor, the green light indicates that it is to continue the 
process execution because the results of the analysis in the 
indicators group report that the situation is satisfactory. The 
yellow warning signs to pay attention, because the level of 
satisfaction at the previously set target is regular. Already the 
red light indicates that the process should be stopped, to be 
unsatisfactory - too far from the established pattern. 

Thus for ANNs, the "Green" label obtained "satisfactory", 

the "Yellow" label "Regular" and the "Red" label 
"Unsatisfactory". Therefore, if the output provided by the ANN 
obtained labeled "satisfactory" (Green), then the group of the 
indicators is analyzed in accordance with the desired - the 
processes are controlled. If the result of the output is "Regular" 
(Yellow), then the process has breaks, so greater attention is 
needed in case management. Finally, if the output is 
"unsatisfactory", the processes are not effective, requiring 
corrective actions. 

Although the applications of the results of ANNs 
algorithms are presented in subsection C, some relevant 
information about the experimental procedure is presented in 
subsection B. 

 
 

 
Fig.6. Traffic light metaphor to classification of ANN. 

 

A. Indicators database used 
The company that provided the performance indicator data 

has been working in software production for over 30 years and 
has hundreds of municipal governments as clients. The 
historical basis includes indicators of four years ago. This 
paper does not include the process of the data collection, but it 
is worth remembering that the MPS-SW certification (level G) 
provides some guarantees of the use of the best practices and 
data reliability. 

The Fig. 7 presents the statistical data related with the 
database used, considering three projects, identified as "A", 
"B" and "C". It is worth mentioning that the company's project 
managers collaborated with the labeling process of the 
samples: 

 
• Number of instances: 300; 
• Number of attributes: 3; 
• Missing values: none; 
• Distribution of grades: 33% for each one of the classes; 
• Information about the attributes (indicators): 

a) Open requirements per daily in Project A; 
b) Open requirements per daily in Project B; 
c) Open requirements per daily in Project C; 
d) Cluster: 

§ Cluster 1: Satisfactory; 
§ Cluster 2: Regular; 
§ Cluster 3: Unsatisfactory. 

 
 

 
Fig. 7. Statistical data related on the database of the indicators used. 

- STOP THE PROCESS! 

- PAY ATTENTION! 

- OK, GO AHEAD! 



B. Information about the experimental process 
Before presenting the results of the ANN techniques, it is 

important to present some relevant information and certain 
criteria adopted. 

First of all, the software tool used for the application of 
supervised learning algorithms is called Weka, from the 
University of Waikato. 

The Matlab system was used to implement the PCC 
algorithm proposed for analysis of the performance indicators 
(section III). 

The time spent by the humans in labeling process of the 
sample was calculated from the sum of each measurement 
performed. This time will be important in the experiments 
presented in subsection C. Already the time spent in the review 
process made by the algorithms was measured by specific 
functions in each tool. 

It is worth noting that each attribute had its normalized 
value before being used in the algorithms. 

The training was made using ten different configurations, 
according to the percentage of trained sample: 2%, 4%, 6%, 
8%, ..., 20%. Thus, each algorithm was executed ten times for 
each trained percentage, and the result presented is the average 
of the ten runs. This was necessary because the algorithms used 
are stochastic pattern and the data labeled in training were 
random. 

C. Application of Artificial Neural Network algorithms 
The grouping of indicators was based on the reference 

model presented in section V. The data from the same indicator 
were grouped but relating to three different projects (A, B and 
C). This kind of grouping allows a comprehensive analysis of 
the progress of different projects and/or the company's 
products, in relation to the selected requirement. 

As presented in subsection A, 300 instances (100 of each 
cluster) and three attributes were used. As shown in subsection 
B, training of ANNs was carried out gradually from 2% to 2% 
by selecting that percentage of samples for training and the rest 
for validation. 

The Fig. 8 shows the result of the accuracy rate for each 
algorithm, according the increase in the percentage of trained 
samples. It can be noticed that the KNN algorithm presented 
good results with 2% trained samples, but the result got close 
to 81% accuracy when 20% of the samples were trained. The 
MLP algorithm achieved strong growth at the beginning and 
gradual growth until the end, almost reaching 85% accuracy. 
The PCC algorithm achieved about 76% accuracy with 2% of 
the trained samples. It had an increase of 6% with 4% of the 
trained samples and gradually increased from 82% to 84%, 
with 12% of the trained samples. Considering the range 
between 12% and 20% of trained samples, the PCC algorithm 
showed a significant increase of 84% to 92%. So, the best 
accuracy rate was achieved with the PCC algorithm for all 
variations of training, even with few data for training. 

In relation to the accuracy by class, the Fig. 9 shows the 
result of better time PCC algorithm. The algorithm correctly 
classified 96 samples as satisfactory and missed four, 
classifying them as Regular. In Cluster 2 (Regular) the PCC 

algorithm correctly classified 86 samples and 14 wrong, and 2 
as satisfactory and 12 as cluster 3 (Unsatisfactory). The cluster 
3 obtained 86 correct samples and missed 14, classifying it as 
Regular. 

Another important point is the performance of PCC 
algorithm for analysis of performance indicators compared to a 
human (HUM). The Fig. 10 shows that as the amount of data 
increases the difficulty of the human being also increases 
significantly. The measurement obtained by the analysis of a 
human being had an expert in the field during the data labeling 
step. This specialist visually analyzed the indicator results on 
each project and compared with its expected result. 

 
 

 
Fig. 8.Accuracy rate by technique. 

 
 

 
Fig. 9. Accuracy rate with cluster: actual vs prediction. 

 
 

 
Fig10. Runtime: algorithm PC vs human  (HUM). 

 

VII. CONCLUSIONS 
This paper proposes the use of semi-supervised ANN 

technique called Cooperation and Competition between 
particles (PCC) to support the performance indicator analysis 



in processes of software engineering. Results with real data 
bases showed that the PCC algorithm achieved excellent 
accuracy rate, higher than the two supervised learning 
algorithms used. 

The use of an ANN allows composed groupings indicators 
of different processes, products and designs and enables 
analysis of individual indicators. Tools that implement ANNs 
provide a differentiated overview of what is being measured, 
regardless of the complexity of the data.  This contributes to 
the use of performance indicators in software development 
companies with different sizes, including micro, small and 
medium enterprises. Reference models proposed for selection 
and grouping of indicators contribute to assist organizations in 
selecting the appropriate settings to quality control processes. 
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