

Semi-supervised learning applied to performance
indicators in software engineering processes

Leandro Bodo1,3,
Hilda Carvalho de Oliveira1,3, Fabricio Aparecido Breve1,3, Danilo Medeiros Eler2,4

1Dep. of Statistics, Applied Mathematics and Computer Science
2Dep. of Mathematics and Computer Science

Universidade Estadual Paulista, UNESP
3Rio Claro, 4Presidente Prudente - Brazil

lbodo@rc.unesp.br, hildaz@rc.unesp.br, fabricio@rc.unesp.br, daniloeler@fct.unesp.br

Abstract—Performance indicators are critical resources for
quality control in the software development process. Over time,
the data volume of the historical basis these indicators increase
significantly. Moreover, the diversity of treatment (individual or
group) and the frequency of data collection hamper the analysis.
The time and reliability of these analyzes are important to
support a faster and more effective decision. Thus, this paper
proposes the use of artificial neural networks with semi-
supervised learning to analyze the historical basis of performance
indicators. In order to support the sample labeling process it is
recommended to use information visualization techniques. An
indicator reference model was defined based on the software
process reference model MPS for Software (MPS-SW) to be used
before the labeling process.

Keywords—Software Processes, performance indicators,
machine learning, artificial neural network, MPS-SW.

I. INTRODUCTION
During a software development, procedures for quality

control aim to identify ways to mitigate causes of
unsatisfactory results. Furthermore, these procedures also allow
to evaluate the performance of the processes and to indicate the
need for changes and corrections on the process [1], [2].
Specific project results must be monitored to determine if they
are in compliance with the quality criteria previously defined
and which are relevant to the development of the software.
Statistical techniques have helped the evaluation of the results
of quality control.

The performance indicators are important tools to the
quality control in general. These indicators aid to quantify the
performance of activities, processes and products, making it
possible to analyze the results and compare them to the planned
goals [3]. The indicators provide numerical relations that
reflect the current state of the processes. These relations
provide information for decision-making related to the
processes, and consequently, to their own business. The
performance indicators can present variations that require the
management’s attention when making a decision. It is possible

to evaluate the variations that occurred and generate prognostic
(projections) through historical comparisons of an indicator.

The performance indicators might be analyzed either
individually or in groups, depending on the defined
specifications to support the decision-making. These groupings
can also consider distinct indicators from different projects or
products, or consider the same indicator that comes from
different projects or products. The analyses are performed
continuously during the software development process, in
order to create a historical basis and judge the quality of the
software during the whole process [2].

However, the historical basis of the performance indicators
tends to become large and complex That happens because of
the large amount of data that is stored at the same time and the
intrinsic diversity of the indicators (different types, granularity
and frequency of data collection). Furthermore, the data
volume that is produced by these indicators tends to increase
dramatically over the monitoring time. All these factors require
a solution that enables the analysis of performance indicators,
improving the use of these indicators in the software
development process.

Within this context, this paper proposes the use of semi-
supervised machine learning techniques for analysis of
performance indicators in software development processes.
This type of learning reduces the cost with labeling process of
supervised learning and does not despise the labels of samples,
it could happen in the unsupervised learning.

The goal is to "teach" (to train) an Artificial Neural
Network (ANN) to recognize the existing patterns in the large
volume of the historical data generated by the indicators. Thus,
the ANN will be able to analyze the indicators in different
development processes and provide results that indicate the
status of a particular situation, similar to a traffic light. Overall,
an ANN can analyze indicator groups simultaneously, with
different complexities. This allows the indicator groups to be
controlled in dashboards. The same goes for individual
indicators. The same goes for individual indicators. This
technique is able to provide a decision-making more effective

and faster.
Therefore, the section II presents an overview of machine

learning and ANN. The section II outlines the semi-supervised
learning algorithm for analysis of performance indicators:
Particle Competition and Cooperation (PCC).

ANNs have been used for treatment of performance
indicators in different applications of Software Engineering.
The section IV presents a few comments about it and discusses
some criteria for the use of ANNs in software development
processes.

On the other hand, the section V outlines an indicator model
based on processes levels G and F of reference model MPS for
software (MPS-SW). This model will help to guide the
grouping of indicators in software development organizations.

The section VI shows the application of the PCC algorithm
on a real set of performance indicator samples. These
indicators belong to the historical basis of a company that
develops software, that is a project partnership and certified in
the level G on the model MPS-SW. The results of PCC
application are compared with the results that have been
obtained in two supervised ANN techniques. There was no
comparison with unsupervised methods, because this type of
learning ignores the information of the sample labels - and this
information is fundamental for the type of problems presented.
The final considerations of this article are presented in section
VII.

II. MACHINE LEARNING AND ARTIFICIAL NEURAL NETWORK
Within the context of artificial intelligence, machine

learning is an area that involves the construction of systems
capable of acquiring knowledge automatically. This area
considers the development of algorithms that use the acquired
"experience" to produce results without human intervention. A
machine learning algorithm can make decisions based on
examples of input data [4].

Overall, machine learning algorithms require the analysis
of a large amount of samples for learning. The idea is to teach
the algorithms to solve different problems in a given context.
This context may have characteristics that cause changes over
time and/or the type of application and use [5].

ANN is a type of machine learning techniques, which is
discussed in subsection A. There are different machine learning
categories, each one recommended for a particular type of
problem. The subsection B presents three categories:
supervised, unsupervised and semi-supervised.

A. Artificial Neural Network (ANN)
ANNs are computational techniques based on mathematical

models inspired by the neural structure of intelligent
organisms. The acquisition of knowledge in ANNs is
performed through experience [6]. They have the ability to
learn by examples, making inferences from that learning and
improving their performance gradually.

ANN has a behavior based on groups of neurons in the
human brain, which receive and transmit information through
the dendrites and axons, respectively [7]. When a specific set
of data inputs and their outputs are presented with an ANN, it

is able to auto adjust its synaptic weights. The adjustment of
the connections is obtained by learning adopting as training
criterion (and subsequent analysis) a specific activation
function. The training phase of ANNs consists in a functional
relationship mapping that exists between the inputs and
outputs. Following training, the network should be able to
generalize the behavior of the process at the time when other
inputs are presented to it (different inputs from those used
during training) [8].

ANNs can be used for performance evaluation indicator
groups of software engineering processes, as proposed in this
paper. Indicators are considered the network attributes and
have different measurement value and goals, without a pattern
in data types defined (may contain integer, boolean or real
values). Therefore, a software factory can "teach" how certain
indicator groups can express control targets, adjusting its
parameters on demand.

B. Machine Learning categories
A supervised learning algorithm requires that an expert

(external entity) introduce some sets of patterns for the inputs
and the corresponding standards for the outputs (results). An
output can be a numeric value or can predict a class label for
the input object. In the training phase of an ANN, for example,
the expert indicates explicitly for each input if the output
response is good or bad (data labeling process). Thus, the result
provided by the network is compared to the expected answer. If
the result is different than expected, an error is reported to the
network and adjustments need to be made in order to improve
future responses.

Unsupervised learning algorithms do not require an
external entity to perform the training process. They aim to
determine how the data is organized only based on the input
patterns, without labels or output values. These algorithms
process the inputs available and try to establish internal
representations to encode features and classify them
automatically, by detecting the singularity in the input samples.

Semi-supervised learning algorithms use both labeled and
unlabeled data for training. In many cases, the use of few
labeled data with many unlabeled data considerably improves
accuracy of the learning [9].

Due to the large amount of existing databases, label data for
supervised learning algorithms have become an increasingly
unworkable process. Usually, the labeling process is expensive
and time consuming, requiring intense involvement of human
experts. On the other side, the unsupervised algorithms ignore
valuable information label of the data items. Semi-supervised
algorithms can mitigate these problems: a few labeled data
items are combined with a large amount of unlabeled data,
producing better classifiers [10].

III. ALGORITHM ANN SEMI-SUPERVISED ADOPTED
The selected algorithm to propose a treatment for

performance indicators in this paper is called Particle
Competition and Cooperation (PCC) [9].This semi-supervised
ANN algorithm was chosen because it requires little human
effort and consequently little financial cost.

The PCC algorithm consists of a graph of related networks,

which has various particles moving through the network. These
particles are organized in the form of teams, where particles of
the same team go over the network in a cooperative way in
order to propagate their labels. Meanwhile, particles of
different teams compete with each other to determine the
borders of the class, and reject intrusive particles.

Traditionally, labels are spread over the network in a global
way in other semi-supervised learning algorithms based on
graphs. This means that the information is propagated from all
nodes to all other nodes for each iteration of the algorithm,
accordingly to the respective edge weights. On the other hand,
the spread of the label occurs locally at the PCC algorithm.
Therefore, each step of the algorithm, every particle propagates
its label to a selected neighbor by the rule "random1-greedy2".
Thus, each particle visits only a portion of the nodes that
potentially belongs to its team (subnet), preventing from
redundant operations are carried out [9].

Breve [10] presents a metaphor of particles based on ant
behavior (Fig. 1) to explain the PCC algorithm.

Fig 1. Metaphor based on behavior ant [10].

Every node on the network has an array of elements,
responsible for representing a level of particles each team.
Initially, the input data set is transformed into a non weights
and undirected network, where each node corresponding to a
non-labeled sample will have its field level configured with the
same value , where c = number of classes / teams. The Fig. 2
(a) explains the initial situation with four classes, ie, nodes not
labeled with domain levels 0.25: [0.25 0.25 0.25 0.25]. Next, a
set of ants are placed on the network. Each of them is a labeled
data item that is set to the highest value. The Fig. 2 (b)
illustrates this situation to the four classes labeled as Class A:
[1 0 0 0]. The subset of particles with the same label is called
"team" [9].

1Random walk: each particle chooses any neighbor to visit at random, without
worrying about the domination levels or distance from it home node. It is a
movement for acquisition of new node and exploration [9].
2Greedy walk: each particle visits the nodes that are closest to their home
nodes, especially those who are already dominated by its own team. It is a
movement to defend the territory of his team [9].

 (a) (b)

Fig. 2. Initial domination level: (a) unlabeled sample; (b) labeled sample.

Every ant chooses a neighboring node to visit each iteration

of the algorithm, using the "random-greedy" rule. The domain
level of their team is increased when an ant selects a
neighboring node. Meanwhile, domain levels of other teams
are decreased. If the node to be visited is in control of its own
team, the ant gets stronger, increasing their domain levels.
However, the ant weakens if the visited node is domain of the
other team. Each ant works prioritizing the domain of their
respective neighborhoods (neighboring nodes). For this, they
have a particular node as home and each ant keeps information
of the distance between their respective homes and other
network nodes. This method includes cooperation between the
ants. Thus they prioritize helping their teammates with their
neighborhoods, and eventually try to invade opponents’
territories. Each team tries to dominate the largest possible
number of nodes, and simultaneously try to avoid the invasion
of ants from other teams. At the end of the iterative process,
each unlabeled data item will be labeled according to the
team's label which contains the highest domain level.

IV. ARTIFICIAL NEURAL NETWORK APPLIED TO
PERFORMANCE INDICATORS

Machine learning techniques have been used with
performance indicators in different areas of knowledge. Melo
et al. [11] used an ANN Multilayer Perceptron (MLP) to
predict the variation in the flow of vehicles on roads, helping
drivers to selecting the best routes. Neto, Nagano and Moraes
[12] used an unsupervised ANN to classify agricultural
cooperatives based on their socioeconomic indicators.
Cattinelli et al. [13] used an ANN to analyze groups of
performance indicators in 109 hemodialysis clinics in Italy,
Portugal and Turkey. Within the context of Software
Engineering, Kutlubay et al. [14] used ANN techniques for
detecting defects in software products.

In this way, this paper proposes the use of PPC algorithm
(see section III) for an ANN with semi-supervised learning for
quality control during software development. This proposal has
a cost of labeling data up to 20% - which is considered low
cost. However, it will allow the development of tools that will
automate the monitoring processes effectively and efficiently.
The reliability of the labeling process can be aided with
information visualization techniques. It is recommended the
LSP techniques (Least Squares Projection) and parallel
coordinates.

Overall, the software processes and the performance
indicators are defined for any different software developer
organization. Thus, an indicator model was created to guide the
grouping of performance indicators before using an ANN. This

model will serve as a reference to the initial work of selection
and categorization of the indicators in the organization before
the labeling process, as shown in section V.

V. SOFTWARE PROCESS REFERENCE MODEL FOR
PERFORMANCE INDICATORS

As software organizations have specific indicators and
processes, the processes included in the MPS-SW quality
model were considered as reference for this work. Initially,
seven processes are being considered as levels G and F models.
The largest numbers of certified software organizations are in
these two maturity levels (almost 90% of the certifications). An
overview of this model is presented in the subsection A.

The subsection B presents an indicator model based on the
processes of the maturity levels G and F of the MPS-SW
model, to support the selection and clustering of indicators
before the application of the ANN. The company’s real
indicators may be converted to the MPS-SW model indicator.
However, not all model indicators can be converted into real
indicators.

A. MPS-SW model
The software MPS-SW model is part of Brazilian Software

Process Improvement Program (MPS.BR) created in 2003.
This model is based on ISO / IEC 12207 (software lifecycle)
and ISO / IEC 15504 (software evaluation). Currently there is
an agreement between the Software Engineering Institute (SEI)
and the Association for Promoting the Brazilian Software
Excellence (SOFTEX) for joint assessment and certification of
MPS-SW models and CMMI-DEV [17]. The MPS-SW model
is designed to benefit mainly micro, small and medium
software enterprises (MSME).

The MPS-SW model has seven maturity levels aiming a
gradual implementation and certification from the first level:
G. This maturity level includes two critical software processes
for MSME: Requirements Management and Project
Management. On each level are added new processes, as
shown in TABLE I. This means that a higher level involves its
processes more the processes from the lower levels. The
highest level, A, involves all processes from the lower levels
and emphasizes the continuity of the improvement in processes
[18].

TABLE I. PROCESSES ADDED TO EACH MATURITY LEVEL (ML) OF
THE MPS-SW [18].

ML PROCESSES
A (no new processes are added)
B Project Management (new outcomes)
C Decision Management; Risk Management; Development for Reuse
D Requirements Development; Product Design and Construction;

Product Integration; Verification and Validation
E Human Resources Management; Process Establishment; Process

Assessment and Improvement; Project Management (new
outcomes); Reuse Management

F Measurement; Configuration Management; Acquisition; Quality
Assurance; Project Portfolio Management

G Requirements Management; Project Management

The utilization of performance indicators is required for the
process from level F - that is kept up to level A. However, a
good practice is to adopt performance indicators from level G.

B. Reference model for indicators
A business ontology was developed by Pizzoleto [16]

organizing the levels G and F of the MPS-SW model. This
ontology proposed performance indicators for almost all the
expected results in the processes. Fig. 3 shows the Protégé
system screen with part of the measurements process of the F
level, as described in the ontology.

Using this ontology, interviews in MPS-SW certified
software companies were held. Based on literatures on
performance indicators in Software Engineering, such as [19],
[20], [21] and [22], an indicator model has been developed for
the processes of the levels G and F. Fig. 4 shows the indicator
model with the following attributes: description, purpose,
calculation method, measure unit, collection frequency, results
presentation frequency and scope application (project, product
and business).

Fig.3. Measurement process from the MPS-SW ontology in the Protégé

system [19].

Fig. 4. Representation of the reference model of performance indicators.

A group indicator model was defined based on four
perspectives of the Balanced Scorecard strategy (BSC):
Financial, Customer, Internal business processes, and Learning

and growth. These perspectives reflect the vision and
organizational strategy of a company [23]. The proposal was to
associate the indicators used in the model presented in Fig. 4
with the categories of BSC perspectives. Fig. 5 illustrates some
of these indicators associated with each view. This model
supports the software organization to form sets of indicators to
the process of labeling and training of ANN. The output result
for each perspective will be the "status" of the analyzed set of
indicators.

Fig. 5. Indicators groups based on the BSC perspectives with three possible

outputs.

VI. RESULTS
In order to evaluate the use of ANNs on analysis of

performance indicators in software processes, experiments
were performed with two different types of learning:
supervised and unsupervised. Two algorithms of ANN
supervised that are well-known in the literature were selected:
Multilayer Perceptron (MLP) and K-Nearest Neighbor (KNN).
The intention was to compare the results with the PCC
algorithm, presented in section III.

A real indicators database used in software processes was
applied as an input to the ANN. These indicators were chosen
from the reference model of the proposed indicators in section
V. The data were obtained from a company certified in level G
of MPS-SW model. This company, a partner of the project,
develops software for public management. The subsection A
provides more information about the database used.

The output classification was made using very simple
criteria, similar to a traffic light, as shown in Fig. 6. In this
metaphor, the green light indicates that it is to continue the
process execution because the results of the analysis in the
indicators group report that the situation is satisfactory. The
yellow warning signs to pay attention, because the level of
satisfaction at the previously set target is regular. Already the
red light indicates that the process should be stopped, to be
unsatisfactory - too far from the established pattern.

Thus for ANNs, the "Green" label obtained "satisfactory",

the "Yellow" label "Regular" and the "Red" label
"Unsatisfactory". Therefore, if the output provided by the ANN
obtained labeled "satisfactory" (Green), then the group of the
indicators is analyzed in accordance with the desired - the
processes are controlled. If the result of the output is "Regular"
(Yellow), then the process has breaks, so greater attention is
needed in case management. Finally, if the output is
"unsatisfactory", the processes are not effective, requiring
corrective actions.

Although the applications of the results of ANNs
algorithms are presented in subsection C, some relevant
information about the experimental procedure is presented in
subsection B.

Fig.6. Traffic light metaphor to classification of ANN.

A. Indicators database used
The company that provided the performance indicator data

has been working in software production for over 30 years and
has hundreds of municipal governments as clients. The
historical basis includes indicators of four years ago. This
paper does not include the process of the data collection, but it
is worth remembering that the MPS-SW certification (level G)
provides some guarantees of the use of the best practices and
data reliability.

The Fig. 7 presents the statistical data related with the
database used, considering three projects, identified as "A",
"B" and "C". It is worth mentioning that the company's project
managers collaborated with the labeling process of the
samples:

• Number of instances: 300;
• Number of attributes: 3;
• Missing values: none;
• Distribution of grades: 33% for each one of the classes;
• Information about the attributes (indicators):

a) Open requirements per daily in Project A;
b) Open requirements per daily in Project B;
c) Open requirements per daily in Project C;
d) Cluster:

§ Cluster 1: Satisfactory;
§ Cluster 2: Regular;
§ Cluster 3: Unsatisfactory.

Fig. 7. Statistical data related on the database of the indicators used.

- STOP THE PROCESS!

- PAY ATTENTION!

- OK, GO AHEAD!

B. Information about the experimental process
Before presenting the results of the ANN techniques, it is

important to present some relevant information and certain
criteria adopted.

First of all, the software tool used for the application of
supervised learning algorithms is called Weka, from the
University of Waikato.

The Matlab system was used to implement the PCC
algorithm proposed for analysis of the performance indicators
(section III).

The time spent by the humans in labeling process of the
sample was calculated from the sum of each measurement
performed. This time will be important in the experiments
presented in subsection C. Already the time spent in the review
process made by the algorithms was measured by specific
functions in each tool.

It is worth noting that each attribute had its normalized
value before being used in the algorithms.

The training was made using ten different configurations,
according to the percentage of trained sample: 2%, 4%, 6%,
8%, ..., 20%. Thus, each algorithm was executed ten times for
each trained percentage, and the result presented is the average
of the ten runs. This was necessary because the algorithms used
are stochastic pattern and the data labeled in training were
random.

C. Application of Artificial Neural Network algorithms
The grouping of indicators was based on the reference

model presented in section V. The data from the same indicator
were grouped but relating to three different projects (A, B and
C). This kind of grouping allows a comprehensive analysis of
the progress of different projects and/or the company's
products, in relation to the selected requirement.

As presented in subsection A, 300 instances (100 of each
cluster) and three attributes were used. As shown in subsection
B, training of ANNs was carried out gradually from 2% to 2%
by selecting that percentage of samples for training and the rest
for validation.

The Fig. 8 shows the result of the accuracy rate for each
algorithm, according the increase in the percentage of trained
samples. It can be noticed that the KNN algorithm presented
good results with 2% trained samples, but the result got close
to 81% accuracy when 20% of the samples were trained. The
MLP algorithm achieved strong growth at the beginning and
gradual growth until the end, almost reaching 85% accuracy.
The PCC algorithm achieved about 76% accuracy with 2% of
the trained samples. It had an increase of 6% with 4% of the
trained samples and gradually increased from 82% to 84%,
with 12% of the trained samples. Considering the range
between 12% and 20% of trained samples, the PCC algorithm
showed a significant increase of 84% to 92%. So, the best
accuracy rate was achieved with the PCC algorithm for all
variations of training, even with few data for training.

In relation to the accuracy by class, the Fig. 9 shows the
result of better time PCC algorithm. The algorithm correctly
classified 96 samples as satisfactory and missed four,
classifying them as Regular. In Cluster 2 (Regular) the PCC

algorithm correctly classified 86 samples and 14 wrong, and 2
as satisfactory and 12 as cluster 3 (Unsatisfactory). The cluster
3 obtained 86 correct samples and missed 14, classifying it as
Regular.

Another important point is the performance of PCC
algorithm for analysis of performance indicators compared to a
human (HUM). The Fig. 10 shows that as the amount of data
increases the difficulty of the human being also increases
significantly. The measurement obtained by the analysis of a
human being had an expert in the field during the data labeling
step. This specialist visually analyzed the indicator results on
each project and compared with its expected result.

Fig. 8.Accuracy rate by technique.

Fig. 9. Accuracy rate with cluster: actual vs prediction.

Fig10. Runtime: algorithm PC vs human (HUM).

VII. CONCLUSIONS
This paper proposes the use of semi-supervised ANN

technique called Cooperation and Competition between
particles (PCC) to support the performance indicator analysis

in processes of software engineering. Results with real data
bases showed that the PCC algorithm achieved excellent
accuracy rate, higher than the two supervised learning
algorithms used.

The use of an ANN allows composed groupings indicators
of different processes, products and designs and enables
analysis of individual indicators. Tools that implement ANNs
provide a differentiated overview of what is being measured,
regardless of the complexity of the data. This contributes to
the use of performance indicators in software development
companies with different sizes, including micro, small and
medium enterprises. Reference models proposed for selection
and grouping of indicators contribute to assist organizations in
selecting the appropriate settings to quality control processes.

REFERENCES
[1] PMI - Project Management Institute INC (Pennsylvania). Um

guia do conhecimento em gerenciamento de projetos: Guia
PMBOK. 4. ed. Newtown Square: PMI, 2008. 459 p.

[2] I. Sommerville, Engenharia de Software. 9. ed. São Paulo:
Pearson, 2011. 529 p. Tradução de: Kalinka Oliveira; Ivan
Bosnic.

[3] L. H. Boyd, J. F. A. Cox, “Cause-and-effect approach to
analyzing performance measures”. Production and Inventory
Management Journal, v. 38, n. 3, p. 25-32, 1997.

[4] T. Mitchell, “Machine Learning”. [s.i]: McGraw Hill, 1997.
[5] E. Alpaydin, “Introduction to machine learning”. Cambridge,

Ma: The MIT Press, 2004.
[6] S. Haykin. Neural Networks: a comprehensive foundation.

Upper Saddle River, Nj: Prentice Hall, 1994. 768 p.
[7] Z. Kovacs, Redes Neurais Artificiais: Fundamentos e

Aplicações. São Paulo: Edição Acadêmica, 1996.
[8] A. P. Braga, A. C. P. L. F. Carvalho, T. B. Ludemir, Redes

Neurais Artificiais: teoria e aplicações. Rio de Janeiro: LTC,
2000.

[9] F. A Brave, L. Zhao, M. G. Quiles, W. Pedrycz, J. Liu,
“Particle competition and cooperation in networks for semi-
supervised learning”. IEEE transactions on knowledge and data
engineering, [s.i], 2009.

[10] F. A. Breve, Aprendizado de máquina utilizando dinâmica
espaço-temporal em redes complexas. 2010. 165 f. Tese
(Doutorado) - Curso de Ciências de Computação e Matemática
Computacional, Departamento de ICMC-USP, Universidade de
São Paulo, São Carlos, 2010.

[11] R. G. Mello, D. A. P. Junior, J. F. G., Oliveira, C. F. Bremer,
Avaliação de desempenho para o gerenciamento estratégico do
chão de fábrica. ANPAD. 14p, 2000.

[12] S.B. Neto, M. S. Nagano, M. B. C. Moraes, Utilização de redes
neurais artificiais para avaliação socioeconômica: uma aplicação
em cooperativas. R. Adm, São Paulo, v.41, n.1, p.59-68, 2006.

[13] I. Cattinelli, E. Bolzoni, M. Chermisi, F. Bellocchio, C. Barbieri,
F. Mari, C. Amato, M. Menzer, A. Stopper, E. Gatti.
Computational intelligence for the Balanced Scorecard:
Studying performance trends of hemodialysis clinics. Artificial
Intelligence in Medicine archive, v 58, I3, p. 165-173, 2013.

[14] O. Kutlubay, M. Balman, D. Gül, A. B. Bener, A Machine
Learning Based Model for Software Defect Prediction, working
paper, Bogazici University, Computer Engineering Department,
2005.

[15] SOFTEX - Associação para Promoção da Excelência do
Software Brasileiro. MPS. BR Melhoria de processo do software
brasileiro: Guia de Implementação – Parte 9: Implementação do
MR-MPS em organizações do tipo Fábrica de Software, 2012a.
Available at: <http://www.softex.br/wp-content/uploads/2013/
07/MPS.BR_Guia_de_Implementacao_Parte_9_20111.pdf>.
Acesso em: 01 jun. 2015.

[16] A. V. Pizzoleto, Ontologia Empresarial no modelo MPS.BR
visando modelagem de processos de negócios, com foco nos
níveis G e F. Dissertação (Mestrado) – Universidade Estadual
Júlio de Mesquita Filho, 2013.

[17] M. Kalinowski, G. Santos, S. Reinehr, M. Montoni, A.R. Rocha,
K.C. Weber, G.H. Travassos, “MPS.BR: promovendo a adoção
de boas práticas de engenharia de software pela indústria
brasileira”. XIII Congreso Ibero americano en "Software
Engineering" (CIBSE), Cuenca, Ecuador, 2010.

[18] M. Kalinowski, K. Weber, N. Franco, E. Barroso, V. Duarte, D.
Zanetti, G. Santos, “Results of 10 Years of Software Process
Improvement in Brazil Based on the MPS-SW Model”. 9th
International Conference on the Quality of Information and
Communications Technology, IEEE, 2014.

[19] A. V. Pizzoleto, H. C. Oliveira, Methodology for ontology
development in support to the MPS model for software. In:
International Conference on Software Engineering Research
And Practice (Serp), 11. 2013, Las Vegas-Nevada, 7p, 2013.

[20] T. R. Ojha, Analysis of hey performance indicators in software
development. Master on Science Thesis. Tampere University of
Technology, 2014.

[21] G. Santos, M. Montoni, R. C. S. Filho, A. E. Katsurayama, D.
Zanetti, A. O. S. Barreto, A. R. Rocha, Indicadores da
Implementação do Nível E do MR-MPS em uma Instituição de
Pesquisa. VIII Simpósio Brasileiro de Qualidade de Software.

[22] R. T. Moreira, G. N. Lima, B. B. Machado, W. T. Marinho, A.
Vasconcelos, A. C. Rouiller, Uma abordagem para melhoria do
processo de software baseada em medição. VIII Simpósio
Brasileiro de Qualidade de Software.

