
Parallelization of the Particle Competition and
Cooperation approach for Semi-Supervised Learning

Raul Moreira de Souza
Department of Statistics, Applied Mathematics and

Computation(DEMAC)
Institute of Geosciences and Exact Sciences (IGCE)

São Paulo State University (UNESP)
Rio Claro, Brazil

raul_ms02@yahoo.com.br

Fabricio Breve
Department of Statistics, Applied Mathematics and

Computation(DEMAC)
Institute of Geosciences and Exact Sciences (IGCE)

São Paulo State University (UNESP)
Rio Claro, Brazil

fabricio@rc.unesp.br

Abstract—This work emphasis the development of fast ways
to perform the particle competition and cooperation model,
which is a nature inspired algorithm of semi-supervised learning.
To do so, the algorithm was parallelized on multi-core CPU and
GPU(Graphics Process Unit). A modified version of the model
aiming to increase its velocity was proposed, developed and
tested. This paper contains explanations of how the proposed
algorithm works, how it was implemented for parallel processing,
how the modified version works and experiments comparing the
different implementations of the particle competition and
cooperation algorithm on real world data sets, followed by
analysis of the results.

Keywords—Semi-supervised learning; particles competition
and cooperation; network-based methods; label propagation;
parallelism; GPU implementation;

I. INTRODUCTION

One of the most important branches of computer science is
the parallelism, and its importance is growing up with the new
multi-core processors and GPU's(Graphic Processing Units)
technologies, so the parallelization of algorithms has become
very crucial nowadays [1], [2], [3]. Other important field of
computer science is the nature inspired computing, which is the
development of computer techniques based on natural
behaviors [4]. This paper describes the work and results of a
research whose objective was to develop faster ways to
perform a semi-supervised learning and nature inspired
algorithm proposed by Breve et. Al[5] without injure its
efficiency, through the implementation of parallel processing,
focusing on it's use has an automatic data classifier.

II. THE COMPETITION AND COOPERATION PARTICLE

ALGORITHM

This section is an overview of the particle competition and
cooperation algorithm proposed by Breve et al.[5]. The
proposed model is a graph based semi-supervised learning
algorithm inspired by natural behaviors, such as competition
for resources between animals, exploration of territory by
humans and animals, cooperation among individuals of the
same specie or group, etc. This model contains mechanisms of
competition and cooperation combined into a single schema.
Particles representing the same class form teams and walk in a
cooperative way to propagate their label on the network. At the

same time, particles of different classes (teams) compete for
determining the edge of classes.

Given a set of labeled data, each of its instances becomes a
particle. Each particle has a strength attribute which determines
how its going to change the domination levels of a node and it
is initially 1, a home node which corresponds to a labeled node
of the network, a team which the particle will cooperate and a
table of distances of the particle to all the data set nodes.

Each network node has a vector of elements where each
element represents the level of domination of a team on that
node. As the system runs, the particles go through the network
and increases the level of domination of its team on the nodes,
while decreases the level of domination of other teams.
Furthermore, each particle also has a power level which
increases when it visits a node dominated by its team, and
decreases when it visits a node dominated by another team.
This force is important because the change that particle cause
in a node (increasing its team dominance level) is proportional
to the strength that it currently has. This mechanism ensures
that the particles become stronger when they are in their
neighborhood, protecting it, and they get weaker when they try
to invade other teams territories.

At each iteration, each particle chooses one of two walking
types randomly with predefined probabilities:

• Random walking: the particle chooses randomly, with
equals probabilities, any of the neighbor nodes of the node
where it is in. This walking is used to reproduce the animal
behavior of territories exploration, in this case the particles will
explore the graph nodes.

• Greedy walking: the particle chooses randomly any of the
neighbor nodes of the node where it is, with probabilities
calculated proportionally to the dominance levels of the
particle's team in each node.

In that way the particles tends to walk on the nodes that are
dominated by its team protecting them from invasion by other
teams, so the greedy walking generates a defensive behavior on
the particles. The Fig.1 illustrates how the algorithm works.

mailto:raul_ms02@yahoo.com.br

Fig. 1. Illustrations of node and particle dynamics. (a) initial domination
levels for a node corresponding to a labeled sample (left) and an unlabeled
node (right) in a problem of four classes; (b) a particle gets stronger as it is
targeting a node being dominated by its own team; (c) a particle gets weaker as
it is targeting a node being dominated by another team; (d) a particle increases

its team domination level in the target node while decreasing domination level
of other teams; and (e) node probabilities of being chosen by a particle with
greedy and random movement, all candidate nodes have the same distance
from the particle home node[5].

The main goal of this work was to implement the particle
competition and cooperation algorithm with parallel processing
making the particles walk synchronously with different threads
processing different particles.

III. THE PARALLELIZATION OF THE PROPOSED ALGORITHM

A. The Parallelization on CPU

To make the algorithm work in parallel process on the CPU
threads, the particles were divided into smaller groups. Each
thread process the walking of one particular particle group
during the entire main loop. Synchronizations points were
applied on the particle walking in order to avoid that one
particle walks much more than another at the same time. To the
parallelization on CPU the Open Multi-Processing(OpenMP)
library was chosen to be used because it is an easy to use and
efficient tool for parallelism [6].

B. The Parallelization on GPU

The implementation of the algorithm in GPU is much more
complex than in multi-core CPU, there are specific
requirements that need to be accomplished to take advantage of
the graphic processing unit, such as the occupancy and device
memory transfer. The GPU implementation was entirely done
with the CUDA architecture, to do so, it was necessary to study
and understand its concepts [7].

A large amount of threads is required in order to obtain a
better efficiency in GPU. To adapt the algorithm to this
requisite each thread process the walking of one single particle.
As the random and greedy walking steps have different process
complexity, the synchronization of the particles become harder
and more synchronization points were applied to this version,
in order to avoid that one particle walks much more than
another at the same time.

The main problem on the adaptation to the GPU is the
occupancy factor, if a process cannot be divided into a number
of threads that will keep all the GPU core processors occupied,
the GPU potential is not fully used, and that number can only
be reached with a large amount of particles.

Another main factor is the device memory which is more
limited than CPU memory, if the device memory is exceeded it
is necessary to use host allocated memory, which makes the
processing slower. In the proposed algorithm most of the data
needs to be transferred from the CPU to the GPU, which also
consumes time and compromises the performance.

IV. THE NEW PROPROSED APPROACH

In order to get a better performance in terms of fastness a
new approach of the algorithm was proposed and implemented.
In this method each instance of the labeled subset of data
generates a set of particles instead of just one, in all
experiments of this approach, in this paper, each set has 30
particles. The particles of the set generated by the same
instance share the same home node and are equal at the initial
state, each particle of this set will randomly visit one of the
current node neighbor at each iteration propagating its label,
like in the original model.

There is no greedy walking in this version, the idea is to
instantiate many particles based on one single data instance,
instead of calculate which node is more dominated, the
particles go randomly through the nodes filling most of the
possible ways. In the original algorithm the greedy walk
prevents particles of becoming too weak, in this one, some of
then will become stronger and others weaker, depending on its
course.

This version doesn't require a table of distance which make
it consume less memory, even with the increased number of
particles, and although that increased number of particles
makes each iteration much longer, the number of iterations
required by the algorithm to reach optimal results is much
smaller, making it faster than the parallelized version of the
original algorithm.

This method was developed aiming to GPU, it solves
desynchronization issues caused by greedy walking, having
more particle means it can be separated into more threads, fully
occupying all the GPU's cores and consumes less
memory(which is more limited in graphic cards). However, the
experiments shows that it is also applicable for CPU, this new
approach has the same accuracy of the original on small data
sets and tends to have better accuracy on the larger ones.

V. THE RESULTS

The implementations were tested on real world data sets [8]
with different aspects aiming to obtain a more detailed
understanding of each one's behavior. The Table I. describes
the details of each data set used.

TABLE I. DATA SETS USED FOR THE TESTS

Data Set Aspects
Data set Name Nº of Instances Nº of attributes Nº of classes

Iris 150 4 3

Wine 178 13 3

Satellite Image 6435 36 7

Pen-based
Recognition

10992 16 10

Statlog(Shuttle) 58000 9 7

Skin
Segmentation

245057 3 2

The Tables II to XI contain computational experiments
results of the data sets, with measurements of time and
classification accuracy achieved by each of the
implementations. The implementations are: (I)single core CPU,
(II)parallel processing on multi-core CPU, (III)parallel
processing on GPU, (IV)new approach with parallel processing
on multi-core CPU and (V)new approach with parallel
processing on GPU. The time measurements are the execution
time of the particle's walk only, the graph formation time was
not counted, since for each data set was used the same graph
for all experiments, and all the graph are KNN(k-Nearest
neighbor) undirected and unweighted. All the results showed in
the tables are the average accuracy and execution time of 100
runs, the samples were chosen randomly among the entire data
set and all the tests were made in the same computer with the
following specs :

• Processor: Intel(R) Core(TM) i7-2600K CPU @
3.4GHz 3.7 GHz;

• RAM: 32.0 GB;

• GPU: two NVidia GEForce GTX 560Ti using
Nvidia SLI Technology with 2.0GB of device memory each;

TABLE II. CLASSIFICATION ACCURACY IN THE IRIS DATA SET

% of
labeled
samples

Method

I II III IV V

5,3 80,25 80,48 80,11 80,41 81,12

10,7 88,98 89,07 88,47 88,76 88,22

21,3 92,13 92,14 91,13 92,70 91,14

TABLE III. CLASSIFICATION ACCURACY IN THE WINE DATA SET

% of
labeled
samples

Method

I II III IV V

4,5 76,45 75,98 75,87 77,45 76,82

9,0 90,32 90,49 89,84 90,09 89,75

18,0 93,93 94,05 93,10 93,93 93,51

There is no table of time execution for the Iris and
Wine because with these data sets a comparison of time is
pointless, sometimes the execution is faster than what could be
measured by the time measuring method used, making its
variance too large, and in the GPU an acceptable execution
time could not be reached due to the size of these data sets.
those data sets were tested in order to compare the accuracy.

TABLE IV. CLASSIFICATION ACCURACY IN THE SATELLITE IMAGE DATA
SET

% of
labeled
samples

Method

I II III IV V

2,0 83,16 83,69 82,88 84,37 83,25

4,0 86,29 85,98 84,91 86,36 86,02

8,0 88,05 88,18 87,94 87,83 87,49

TABLE V. TIME EXECUTION ON THE SATELLITE IMAGE DATA SET IN
MILLISECONDS

% of
labeled
samples

Method

I II III IV V

2,0 450 160 561 22 25

4,0 945 256 538 49 28

8,0 1941 489 492 89 59

TABLE VI. CLASSIFICATION ACCURACY IN THE PEN-BASED
RECOGNITION DATA SET

% of
labeled
samples

Method

I II III IV V

1,2 90,89 90,85 89,76 93,72 93,48

2,3 94,86 94,03 93,84 96,14 96,02

4,7 96,01 96,11 96,05 97,86 97,79

TABLE VII. TIME EXECUTION ON THE PEN-BASED RECOGNITION DATA
SET IN MILLISECONDS

% of
labeled
samples

Method

I II III IV V

1,2 426 209 630 76 64

2,3 893 309 607 129 42

4,7 1799 540 534 222 83

In the Tables V and VII there are some interesting results to
discuss how the GPU implementation works, with a bigger
number of particles it can run faster or almost with the same
time than with a smaller number particles, even that the
number of iterations was the same for all tests in those tables.
That happens due to the GPU occupancy, with a small number
of particles the algorithm cannot be divided into as many
threads as the required number to keep the device fully
occupied.

TABLE VIII. CLASSIFICATION ACCURACY IN THE STATLOG(SHUTTLE)
DATA SET

% of
labeled
samples

Method

I II IV

0,4 84,25 84,52 85,95

0,9 89,47 90,01 92,84

1,8 95,02 95,55 96,83

TABLE IX. TIME EXECUTION ON THE STATLOG(SHUTTLE) DATA SET IN
MILLISECONDS

% of
labeled
samples

Method

I II IV

0,4 1416 434 108

0,9 3064 790 204

1,8 7154 1633 359

TABLE X. CLASSIFICATION ACCURACY IN THE SKIN SEGMENTATION
DATA SET

% of
labeled
samples

Method

I II IV

0,4 75,47 75,43 77,59

0,6 79,28 79,43 83,30

0,8 81,29 81,63 84,33

TABLE XI. TIME EXECUTION ON THE SKIN SEGMENTATION DATA SET
IN MILLISECONDS

% of
labeled
samples

Method

I II IV

0,4 262230 63862 1309

0,6 392881 97574 2027

0,8 527601 130266 2709

The data sets Statlog and Skin Segmentation were not tested
on GPU because its processing exceeded the graphic device
memory, this is a major problem of the implementation of the
proposed model on GPU, the consume of memory grow
proportionally to the number of particles, so the amount of
particles necessary to fully occupy the graphic device will
probably exceeds its memory.

VI. CONCLUSION

As shown by the results, the parallelization was
successfully applied, reaching faster execution times without
loss of classification accuracy.

The new approach seems to have better classification
accuracy on large data sets, with a faster execution time.

The particle competition and cooperation algorithm has
proven itself very parallelizable in a wide range of data set
sizes in CPU. It was not advantageous in most of the cases in
GPU due to the difficulties of dividing the process into the
required amount of threads without exceeding the device
memory.

The new approach of the method takes more advantage of
the GPU parallelism, as discussed in the Section III. In CPU it
can be used with larger data sets than the classic approach due
to less use of memory, since there is no table of distances or
calculation of probabilities.

 In general, all the implementations achieved proper
classification accuracy with a small amount of labeled samples,
showing that this graph based algorithm is a good option for
real world problems and very capable of being used in the
newer processors.

REFERENCES

[1] Mitchell, M. Oldham, J. Samuel, A. Advanced Linux Programming.
Indianapolis, USA: Newriders,2001.

[2] Lakshmanan K, Kato S, Rajkumar RR (2010) Scheduling parallel real-
time tasks on multi-core processors. In: RTSS’10: proceedings of the
30th IEEE real-time systems symposium, pp 259–268.

[3] Anderson JH, Calandrino JM (2006) Parallel real-time task scheduling
on multicore platforms. In: RTSS’06: proceedings of the 27th IEEE real-
time systems symposium, pp 89–100.

[4] Leandro Nunes de Castro, Fundamentals of Natural Computing
(Chapman & Hall/Crc Computer and Information Sciences), Chapman
& Hall/CRC, 2006 .

[5] Breve F. A.; Zhao L.; Quiles M. G.; Pedrycz W.; Liu J. "Particle
competition and cooperation in networks for semisupervised learning".
IEEE Transactions on Knowledg and Data Engineering (PrePrints),

2012.DOI10.1109/TKDE.2011.119;
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.119

[6] OpenMP (2011) OpenMP: open multi-processing. http://openmp.org
[7] NVIDIA, C. U. D. A. Programming guide. 2008.
[8] Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[9] Mitchell, T. M. Machine learning. USA: McGraw-Hill Series in
Computer Science, McGraw-Hill Companies, 1997.

[10] Alpaydin, E. (2004). Introduction to machine learning. MIT Press.
[11] Quiles, M. G., Zhao, L., Alonso, R. L., & Romero, R. A. F. (2008).

Particle competition for complex network community detection. Chaos,
18(3), 033107.

[12] Zhu, X. (2005). Semi-Supervised Learning Literature Survey. Technical
Report 1530 Computer Sciences, University of Wisconsin-Madison.

[13] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

http://openmp.org/
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.119
http://dl.acm.org/citation.cfm?id=1177312&CFID=331309544&CFTOKEN=17481147
http://dl.acm.org/citation.cfm?id=1177312&CFID=331309544&CFTOKEN=17481147
http://dl.acm.org/citation.cfm?id=1177312&CFID=331309544&CFTOKEN=17481147

	I. Introduction
	II. The Competition and Cooperation Particle Algorithm
	III. The Parallelization of the proposed algorithm
	A. The Parallelization on CPU
	B. The Parallelization on GPU

	IV. The New Proprosed Approach
	V. The Results
	VI. Conclusion

