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Abstract—This work emphasis the development of fast ways
to  perform  the  particle  competition  and  cooperation  model,
which is a nature inspired algorithm of semi-supervised learning.
To do so, the algorithm was parallelized on multi-core CPU and
GPU(Graphics Process Unit). A modified version of the model
aiming  to  increase  its  velocity  was  proposed,  developed  and
tested.  This  paper  contains  explanations  of  how the  proposed
algorithm works, how it was implemented for parallel processing,
how the modified version works and experiments comparing the
different  implementations  of  the  particle  competition  and
cooperation  algorithm  on  real  world  data  sets,  followed  by
analysis of the results.
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I.  INTRODUCTION

One of the most important branches of computer science is
the parallelism, and its importance is growing up with the new
multi-core  processors  and  GPU's(Graphic  Processing  Units)
technologies,  so the parallelization of algorithms has become
very crucial  nowadays  [1], [2],  [3].  Other important  field of
computer science is the nature inspired computing, which is the
development  of  computer  techniques  based  on  natural
behaviors [4]. This paper describes the work and results of a
research  whose objective  was  to  develop  faster  ways  to
perform  a  semi-supervised  learning  and nature  inspired
algorithm  proposed  by  Breve  et.  Al[5]  without  injure  its
efficiency,  through the implementation of parallel processing,
focusing on it's use has an automatic data classifier.

II. THE COMPETITION AND COOPERATION PARTICLE

ALGORITHM

This section is an overview of the particle competition and
cooperation  algorithm  proposed  by  Breve  et  al.[5].  The
proposed  model  is  a  graph  based  semi-supervised  learning
algorithm inspired by natural  behaviors,  such as competition
for  resources  between  animals,  exploration  of  territory  by
humans  and  animals,  cooperation  among  individuals  of  the
same specie or group, etc. This model contains mechanisms of
competition and cooperation combined into a single schema.
Particles representing the same class form teams and walk in a
cooperative way to propagate their label on the network. At the

same time, particles of different classes (teams) compete for
determining the edge of classes.

Given a set of labeled data, each of its instances becomes a
particle. Each particle has a strength attribute which determines
how its going to change the domination levels of a node and it
is initially 1, a home node which corresponds to a labeled node
of the network, a team which the particle will cooperate and a
table of distances of the particle to all the data set nodes.

Each network node has a vector of elements where each
element represents the level of domination of a team on that
node. As the system runs, the particles go through the network
and increases the level of domination of its team on the nodes,
while  decreases  the  level  of  domination  of  other  teams.
Furthermore,  each  particle  also  has  a  power  level  which
increases  when  it  visits  a  node dominated  by its  team,  and
decreases  when it  visits  a node dominated by another  team.
This force is important because the change that particle cause
in a node (increasing its team dominance level) is proportional
to the strength that it  currently has. This mechanism ensures
that  the  particles  become  stronger  when  they  are  in  their
neighborhood, protecting it, and they get weaker when they try
to invade other teams territories.

At each iteration, each particle chooses one of two walking
types randomly with predefined probabilities:

•  Random walking:  the  particle  chooses  randomly,  with
equals  probabilities,  any of  the  neighbor  nodes of  the  node
where it is in. This walking is used to reproduce the animal
behavior of territories exploration, in this case the particles will
explore the graph nodes.

• Greedy walking: the particle chooses randomly any of the
neighbor  nodes  of  the  node  where  it  is,  with  probabilities
calculated  proportionally  to  the  dominance  levels  of  the
particle's team in each node.

In that way the particles tends to walk on the nodes that are
dominated by its team protecting them from invasion by other
teams, so the greedy walking generates a defensive behavior on
the particles. The Fig.1 illustrates how the algorithm works.
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Fig. 1. Illustrations of node and particle dynamics. (a) initial domination
levels for a node corresponding to a labeled sample  (left) and an unlabeled
node (right) in a problem of four classes; (b) a particle gets stronger as it is
targeting a node being dominated by its own team; (c) a particle gets weaker as
it is targeting a node being dominated by another team; (d) a particle increases

its team domination level in the target node while decreasing domination level
of other teams; and (e) node probabilities of being chosen by a particle with
greedy and random movement,  all  candidate  nodes have  the  same distance
from the particle home node[5].

The main goal of this work was to implement the particle
competition and cooperation algorithm with parallel processing
making the particles walk synchronously with different threads
processing different particles.

III. THE PARALLELIZATION OF THE PROPOSED ALGORITHM

A. The Parallelization on CPU

To make the algorithm work in parallel process on the CPU
threads,  the particles were divided into smaller groups. Each
thread  process  the  walking  of  one  particular  particle  group
during  the  entire  main  loop.  Synchronizations  points  were
applied  on  the  particle  walking  in  order  to  avoid  that  one
particle walks much more than another at the same time. To the
parallelization on CPU the Open Multi-Processing(OpenMP)
library was chosen to be used because it is an easy to use and
efficient tool for parallelism [6].

B. The Parallelization on GPU

The implementation of the algorithm in GPU is much more
complex  than  in  multi-core  CPU,  there  are  specific
requirements that need to be accomplished to take advantage of
the graphic processing unit, such as the occupancy and device
memory transfer. The GPU implementation was entirely done
with the CUDA architecture, to do so, it was necessary to study
and understand its concepts [7].

A large amount of threads is required in order to obtain a
better  efficiency  in  GPU.  To  adapt  the  algorithm  to  this
requisite each thread process the walking of one single particle.
As the random and greedy walking steps have different process
complexity, the synchronization of the particles become harder
and more synchronization points were applied to this version,
in  order  to  avoid  that  one  particle  walks  much  more  than
another at the same time.

The main  problem on the  adaptation  to  the  GPU is  the
occupancy factor, if a process cannot be divided into a number
of threads that will keep all the GPU core processors occupied,
the GPU potential is not fully used, and that number can only
be reached with a large amount of particles. 

Another main factor is the device memory which is more
limited than CPU memory, if the device memory is exceeded it
is necessary to use host allocated memory,  which makes the
processing slower. In the proposed algorithm most of the data
needs to be transferred from the CPU to the GPU, which also
consumes time and compromises the performance.

IV. THE NEW PROPROSED APPROACH

In order to get a better performance in terms of fastness a
new approach of the algorithm was proposed and implemented.
In  this  method  each  instance  of  the  labeled  subset  of  data
generates  a  set  of  particles  instead  of  just  one,  in  all
experiments  of this approach,  in this paper,  each set  has 30
particles.  The  particles  of  the  set  generated  by  the  same
instance share the same home node and are equal at the initial
state, each particle of this set will randomly visit one of the
current node neighbor at  each iteration propagating its label,
like in the original model.



There is no greedy walking in this version, the idea is to
instantiate many particles based on one single data instance,
instead  of  calculate  which  node  is  more  dominated,  the
particles  go  randomly through the  nodes filling most  of  the
possible  ways.  In  the  original  algorithm  the  greedy  walk
prevents particles of becoming too weak, in this one, some of
then will become stronger and others weaker, depending on its
course. 

This version doesn't require a table of distance which make
it consume less memory,  even with the increased number of
particles,  and  although  that  increased  number  of  particles
makes  each  iteration  much  longer,  the  number  of  iterations
required  by  the  algorithm  to  reach  optimal  results  is  much
smaller,  making it faster than the parallelized version of the
original algorithm.

This  method  was  developed  aiming  to  GPU,  it  solves
desynchronization issues  caused  by  greedy  walking,  having
more particle means it can be separated into more threads, fully
occupying  all  the  GPU's  cores  and  consumes  less
memory(which is more limited in graphic cards). However, the
experiments shows that it is also applicable for CPU, this new
approach has the same accuracy of the original on small data
sets and tends to have better accuracy on the larger ones.

V. THE RESULTS

The implementations were tested on real world data sets [8]
with  different  aspects  aiming  to  obtain  a  more  detailed
understanding of each one's behavior. The Table I.  describes
the details of each data set used.

TABLE I. DATA SETS USED FOR THE TESTS

Data Set Aspects
Data set Name Nº of Instances Nº of attributes Nº of classes

Iris 150 4 3

Wine 178 13 3

Satellite Image 6435 36 7

Pen-based
Recognition

10992 16 10

Statlog(Shuttle) 58000 9 7

Skin
Segmentation

245057 3 2

The  Tables  II  to  XI  contain  computational  experiments
results  of  the  data  sets,  with  measurements  of  time  and
classification  accuracy  achieved  by  each  of  the
implementations. The implementations are: (I)single core CPU,
(II)parallel  processing  on  multi-core  CPU,  (III)parallel
processing on GPU, (IV)new approach with parallel processing
on  multi-core  CPU  and  (V)new  approach  with  parallel
processing on GPU. The time measurements are the execution
time of the particle's walk only, the graph formation time was
not counted, since for each data set was used the same graph
for  all  experiments,  and  all  the  graph  are  KNN(k-Nearest
neighbor) undirected and unweighted. All the results showed in
the tables are the average accuracy and execution time of 100
runs, the samples were chosen randomly among the entire data
set and all the tests were made in the same computer with the
following specs :

•  Processor:  Intel(R)  Core(TM)  i7-2600K  CPU  @
3.4GHz 3.7 GHz;

•   RAM: 32.0 GB;

•  GPU:  two  NVidia  GEForce  GTX  560Ti  using
Nvidia SLI Technology with 2.0GB of device memory each;

TABLE II. CLASSIFICATION ACCURACY IN THE IRIS DATA SET

% of
labeled
samples

Method

I II III IV V

5,3 80,25 80,48 80,11 80,41 81,12

10,7 88,98 89,07 88,47 88,76 88,22

21,3 92,13 92,14 91,13 92,70 91,14

TABLE III. CLASSIFICATION ACCURACY IN THE WINE DATA SET

% of
labeled
samples

Method

I II III IV V

4,5 76,45 75,98 75,87 77,45 76,82

9,0 90,32 90,49 89,84 90,09 89,75

18,0 93,93 94,05 93,10 93,93 93,51

There is no table of time execution for the  Iris and
Wine because  with these  data  sets  a  comparison of  time is
pointless, sometimes the execution is faster than what could be
measured  by  the  time  measuring  method  used,  making  its
variance too large,  and in the GPU an acceptable execution
time could not be reached due to the size of these data sets.
those data sets were tested in order to compare the accuracy.

TABLE IV. CLASSIFICATION ACCURACY IN THE SATELLITE IMAGE DATA
SET

% of
labeled
samples

Method

I II III IV V

2,0 83,16 83,69 82,88 84,37 83,25

4,0 86,29 85,98 84,91 86,36 86,02

8,0 88,05 88,18 87,94 87,83 87,49

TABLE V. TIME EXECUTION ON THE SATELLITE IMAGE DATA SET IN
MILLISECONDS

% of
labeled
samples

Method

I II III IV V

2,0 450 160 561 22 25

4,0 945 256 538 49 28

8,0 1941 489 492 89 59



TABLE VI. CLASSIFICATION ACCURACY IN THE PEN-BASED
RECOGNITION DATA SET

% of
labeled
samples

Method

I II III IV V

1,2 90,89 90,85 89,76 93,72 93,48

2,3 94,86 94,03 93,84 96,14 96,02

4,7 96,01 96,11 96,05 97,86 97,79

TABLE VII. TIME EXECUTION ON THE PEN-BASED RECOGNITION DATA
SET IN MILLISECONDS

% of
labeled
samples

Method

I II III IV V

1,2 426 209 630 76 64

2,3 893 309 607 129 42

4,7 1799 540 534 222 83

In the Tables V and VII there are some interesting results to
discuss  how the  GPU implementation  works,  with  a  bigger
number of particles it can run faster or almost with the same
time  than  with  a  smaller  number particles,  even  that  the
number of iterations was the same for all tests in those tables.
That happens due to the GPU occupancy, with a small number
of  particles  the  algorithm  cannot  be  divided  into  as  many
threads  as  the  required  number  to  keep  the  device  fully
occupied.

TABLE VIII. CLASSIFICATION ACCURACY IN THE  STATLOG(SHUTTLE)
DATA SET

% of
labeled
samples

Method

I II IV

0,4 84,25 84,52 85,95

0,9 89,47 90,01 92,84

1,8 95,02 95,55 96,83

TABLE IX. TIME EXECUTION ON THE STATLOG(SHUTTLE) DATA SET IN
MILLISECONDS

% of
labeled
samples

Method

I II IV

0,4 1416 434 108

0,9 3064 790 204

1,8 7154 1633 359

TABLE X. CLASSIFICATION ACCURACY IN THE SKIN SEGMENTATION
DATA SET

% of
labeled
samples

Method

I II IV

0,4 75,47 75,43 77,59

0,6 79,28 79,43 83,30

0,8 81,29 81,63 84,33

TABLE XI. TIME EXECUTION ON  THE SKIN SEGMENTATION DATA SET
IN MILLISECONDS

% of
labeled
samples

Method

I II IV

0,4 262230 63862 1309

0,6 392881 97574 2027

0,8 527601 130266 2709

The data sets Statlog and Skin Segmentation were not tested
on GPU because  its  processing exceeded the graphic device
memory, this is a major problem of the implementation of the
proposed  model  on  GPU,  the  consume  of  memory  grow
proportionally  to  the  number  of  particles,  so  the amount  of
particles  necessary  to  fully  occupy  the  graphic  device  will
probably exceeds its memory.

VI. CONCLUSION

As  shown  by  the  results,  the  parallelization  was
successfully applied, reaching faster  execution times without
loss of classification accuracy. 

The  new  approach  seems  to  have  better  classification
accuracy on large data sets, with a faster execution time.

The  particle  competition  and  cooperation  algorithm  has
proven itself  very parallelizable in  a wide range of  data set
sizes in CPU. It was not advantageous in most of the cases in
GPU due to the difficulties  of  dividing the process  into the
required  amount  of  threads  without  exceeding  the  device
memory.

The new approach of the method takes more advantage of
the GPU parallelism, as discussed in the Section III. In CPU it
can be used with larger data sets than the classic approach due
to less use of memory, since there is no table of distances or
calculation of probabilities.

 In  general,  all  the  implementations  achieved  proper
classification accuracy with a small amount of labeled samples,
showing that this graph based algorithm is a good option for
real  world  problems and very capable  of  being used  in  the
newer processors.
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