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Abstract—Many interactive image processing approaches are
based on semi-supervised learning, which employ both labeled
and unlabeled data in its training process. In the interactive
image segmentation problem, a human specialist labels some
pixels of an object while the semi-supervised algorithm labels
the remaining pixels of the segment. The particle competition
and cooperation model is a recent graph-based semi-supervised
learning approach. It employs particles walking in a graph to
classify the data items corresponding to graph nodes. Each
particle group aims to dominate most unlabeled nodes, spreading
their label, and preventing enemy particles invasion. In this paper,
the particle competition and cooperation model is extended to
perform interactive image segmentation. Each image pixel is
converted into a graph node, which is connected to its nearest
neighbors according to their visual features and location in the
original image. Labeled pixel generates particles that propagate
their label to the unlabeled pixels. The particle model also takes
the contributions from the adjacent pixels to classify less confident
labeled pixels. Computer simulations are performed on real-world
images, including images from the Microsoft GrabCut dataset,
which allows a straightly comparison with other techniques.
The segmentation results show the effectiveness of the proposed
approach.

I. INTRODUCTION

Image segmentation is the process of dividing a digital
image into multiple parts (sets of pixels), identifying objects
or other relevant information [1]. Image segmentation is con-
sidered one of the most difficult tasks in image processing
[2]. Furthermore, fully automatic segmentation is still a big
challenge and the techniques are often domain-dependent.
Therefore, interactive image segmentation, which takes a par-
tial supervision into account, has emerged as an interesting
approach in the last decades [3]–[14].

Many interactive image processing approaches are based on
semi-supervised learning (SSL). SSL is an important paradigm
in the machine learning field specially in problems where
unlabeled data is abundant and labeled data is expensive
and/or time consuming, requiring an intense work of human
specialists [15], [16]. SSL techniques employ both labeled and
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unlabeled data in its training process, overcoming the limita-
tions of both supervised and unsupervised learning approaches,
which use only labeled or unlabeled data, respectively. In the
interactive image segmentation problem, a human specialist
could label some pixels far from the object borders, which is an
easier and faster task than defining object boundaries manually.
Thus, by taking the labeled and unlabeled pixels into account,
the semi-supervised learning algorithm propagates the labels
from the labeled pixels to their related remaining unlabeled
pixels, or the image segments.

The particle competition and cooperation model [17] is a
recent graph-based semi-supervised learning approach. Firstly,
it converts vector-based data sets to non-weighted and undi-
rected graphs, so each data item becomes a graph node, and
edges are created between nodes corresponding to similar data
items. Then, particles, which correspond to labeled data, walk
in the graph in cooperation with other particles representing the
same class and competing against particles representing other
classes. Each particle group aims to dominate most unlabeled
nodes, spreading their label, and preventing enemy particles
invasion. At the end of the process, particles territory frontiers
usually fall near the boundaries between classes, thus achieving
high classification accuracy.

Differently from other semi-supervised graph-based meth-
ods [18]–[23], which are similar and share the same regulariza-
tion framework [15], the particle competition and cooperation
approach spread labels in a local fashion, through the particles,
instead of globally. Therefore, its computational complexity is
close to linear (O(N)), where N is the number of samples in
the dataset.

Although it is a relatively new approach, particle compe-
tition and cooperation was successfully extended and applied
to other important machine learning problems, like overlapped
community detection [24], [25], learning with label noise [26]–
[28], learning with concept drift [29], [30], and combined
active and semi-supervised learning [31]–[33]. However, in all
those scenarios, the model was applied only to vector-based
and graph-based data.

In this paper, the particle competition and cooperation
model is extended to perform interactive image segmentation.
First, each image pixel is converted into a graph node, which is



connected to its k-nearest neighbors according to their visual
features and location in the original image. Then, each labeled
pixel generates a particle that will try to propagate its label
to the unlabeled pixels. Furthermore, the particle dynamics
are improved to decrease storage complexity and to allow the
handling of larger images.

A “second phase” is also introduced to pick labels for nodes
that are either undecided or that the particle approach have a
low confidence regarding to the assigned label/segment. This
scenario can be especially observed in border pixels or in pixels
representing noise. Noise pixels do not share similar features
with their neighborhood, thus they can become isolated nodes.
Besides the nodes that represent noise pixels, whether the
number of neighbors k is set to a low value, the graph might
be composed of several components, and some of them can be
come unreachable by the particles. To avoid those problems, in
the second phase, only the undecided pixels take collaboration
from their neighbor pixels (in the original image) proportional
to their feature similarity, in an iterative fashion until all labels
become stable.

Computer simulations are performed on some real-world
images, including images from the Microsoft GrabCut dataset
[9], so the segmentation accuracy may be compared with those
achieved by some of the state-of-the-art algorithms. The results
show the effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section II
presents an overview of the semi-supervised learning particle
competition and cooperation model. In Section III, the inter-
active segmentation model based on particle competition and
cooperation is described. Section IV shows some computer
simulations. Finally, some conclusions are drawn on Section
V.

II. PARTICLE COMPETITION AND COOPERATION

Roughly speaking, the semi-supervised learning particle
competition and cooperation method [17] works as follows.
Firstly, the vector-based data set is converted to a non-weighted
and undirected graph. Each graph node represents a sample.
Edges between a pair of nodes are created if the Euclidean
distance between them is below a threshold. Alternatively, a k-
nearest neighbors approach can be used to establish the edges.
Secondly, a particle is created for each labeled node. Particles
corresponding to nodes with the same label define a team and
cooperate among themselves to dominate the unlabeled nodes.
On the other hand, particles corresponding to nodes with
different labels compete against each other for the possession
of the nodes. Finally, as the system runs, the particles walk in
the graph following a random-greedy rule.

Each node has a set of domination levels, a level for each
class of the problem. When a particle visits a node, it increases
its class domination level and it decreases the other classes
domination levels on that node. Each particle has a strength
level, which changes according to the domination level of its
class in the node being visited. Each particle also has a distance
table, which stores the distance from its initial node, or the
“home node”, to each node that it has visited. These tables are
updated dynamically as particles walk on the graph. At the end
of the iterative process, each sample is labeled accordingly to
the class associated to the highest domination level.

For further details on the original particle competition and
cooperation algorithm, see [17].

III. INTERACTIVE IMAGE SEGMENTATION MODEL

Given a bidimensional image, the set of pixels are reorga-
nized as X = {x1, x2, . . . , xL, xL+1, . . . , xN}, such that XL =
{xi}Li=1 is the labeled pixel subset and XU = {xi}Ni=L+1 is the
unlabeled pixels set. L = {1, . . . , C} is the set containing the
labels. y : X → L is the function associating each xi ∈ χ to
its label y(xi) in the final segmentation results. The proposed
model will estimate y(xi) for each unlabeled pixel xi ∈ XU .

For each pixel xi, we build a set of 20 features, which are:

1) the pixel row location
2) the pixel column location
3) the red (R) component of the pixel
4) the green (G) component of the pixel
5) the blue (B) component of the pixel
6) the hue (H) component of the pixel
7) the saturation (S) component of the pixel
8) the value (V) component of the pixel
9) the average of R on the pixel and its adjacent pixels

10) the average of G on the pixel and its adjacent pixels
11) the average of B on the pixel and its adjacent pixels
12) the average of H on the pixel and its adjacent pixels
13) the average of S on the pixel and its adjacent pixels
14) the average of V on the pixel and its adjacent pixels
15) the standard deviation of the R on the pixel and its

adjacent pixels
16) the standard deviation of the G on the pixel and its

adjacent pixels
17) the standard deviation of the B on the pixel and its

adjacent pixels
18) the standard deviation of the H on the pixel and its

adjacent pixels
19) the standard deviation of the S on the pixel and its

adjacent pixels
20) the standard deviation of the V on the pixel and its

adjacent pixels

It is worth noting that for all measures considering the
pixel neighborhood, we consider an 8-connected neighbor-
hood, except on the borders where no wraparound is applied.
All components are normalized to have mean 0 and standard
deviation 1 and then scaled by a constant vector λ in order to
emphasize/deemphasize each feature to the upcoming graph
generation. The HSV components are obtained from the RGB
components, using the method described in [34].

An undirected graph G = (V,E) is generated, in which
V = {v1, v2, . . . , vN} is the set of nodes, and E is the set
of edges (vi, vj). Each node vi corresponds to a pixel xi.
Two nodes vi and vj are connected if vj is among the k-
nearest neighbors of vi, or vice-versa, using the Euclidean
distance between xi and xj features. Otherwise, vi and vj
are disconnected.

For each node vi ∈ {v1, v2, . . . , vL}, corresponding to a
labeled pixel xi ∈ XL, a particle ρi is generated and its
initial position is set to vi. Each particle ρj has a variable
ρωj (t) ∈ [0, 1] to hold the particle strength, which defines how



much a particle impacts a node when visiting it. Particles initial
strength are set to the maximum, ρωj (0) = 1.

In [17], each particle also holds a distance table, dy-
namically update as the particles walk, to store the distance
between the particle initial position and each node in the graph.
The storage complexity of the whole set of distance tables
is O(NP ), where N is the amount of nodes and P is the
amount of particles. When handling large images, the amount
of nodes and particles can be much higher than those obtained
from many traditional semi-supervised learning data sets, so
the distance tables may hit system memory limits. Therefore,
we changed particles dynamics so particles on the same team
(representing the same class) share the same distance table.

The storage complexity is reduced to O(NC), where
C is the amount of classes, which is usually much lower
than P . The new distance tables are defined by dc(t) =
d1c(t), . . . , d

N
c (t)}. Each element dic(t) ∈ [0 N−1] holds the

distance in hops measured between node vi and the closest
labeled node from class c. Particles start knowing only that
the distance to labeled nodes of their class is zero (dic = 0
if y(xi) = c). Other distances are set to the largest possible
value (dic = n− 1 if y(xi) 6= c).

Each node vi has a domination vector vωi (t) =
{vω1
i (t), vω2

i (t), . . . , vωC
i (t)}, where each element vωc

i (t) ∈
[0, 1] corresponds to the domination level from the class c
over the node vi. The sum of the domination levels in each
node is always constant,

∑C
c=1 v

ωc
i = 1.

Nodes corresponding to labeled pixels have constant domi-
nation levels, with full domination by the corresponding class.
On the other hand, nodes corresponding to unlabeled pixels
are variable. They begin with all classes domination levels set
equally, but they change as particles visits them. Therefore, for
each node vi, the domination vector vωi is set as follows:

vωc
i (0) =

 1 if xi is labeled and y(xi) = c
0 if xi is labeled and y(xi) 6= c
1
C if xi is unlabeled

. (1)

When a particle ρj visits a unlabeled node vi, the node
domination levels are updated as follows:

vωc
i (t+ 1) =


max{0, vωc

i (t)− 0.1ρωj (t)

C−1 }
if c 6= ρcj

vωc
i (t) +

∑
r 6=c v

ωr
i (t)− vωr

i (t+ 1)
if c = ρcj

, (2)

where ρcj represents the class label of particle ρj . Each particle
ρj will change the node its visiting vi by increasing the
domination level of its class (vωc

i , c = ρcj) while decreasing
the domination levels of other classes (vωc

i , c 6= ρcj)). Remem-
ber that nodes corresponding to labeled pixels have constant
domination levels, therefore (2) is not applied when a particle
visits any of them.

A particle strength changes according to the domination
level of its class in the node it is visiting. Therefore, at each
iteration, a particle strength is updated as follows: ρωj (t) =
vωc
i (t), where vi is the node being visited, and c = ρcj .

When a node vi is being visited, the particle updates its
class distance table as follows:

dic(t+ 1) =

{
dqc(t) + 1 if dqc(t) + 1 < dic(t)
dic(t) otherwise , (3)

where dqc(t) is the distance from the previous visited node
to the closest labeled node of the particle class, and dic(t)
is the distance from the node being visited to the closest
labeled node of the particle class. The distance calculation
is dynamic. Particles do not have knowledge of the graph
connection patterns. They are only aware of which are the
neighbors of the node they currently are. Unknown distances
are discovered as the particles walk, and the distances may be
updated as particles naturally find shorter paths to them.

At each iteration, the particle ρj chooses a node vi to visit
among the neighbors of its current node. The probability of
choosing a node vi is given by: a) the particle class domination
on it, viωc, and b) the inverse of its distance, dic, to the closest
labeled node from the particle class, as follows:

p(vi|ρj) =
Wqi

2
∑n
µ=1Wqµ

+
Wqiv

ωc
i (1 + dic)

−2

2
∑n
µ=1Wqµv

ωc
µ (1 + dµc )−2

, (4)

where q is the index of the node being visited by particle ρj ,
c is the class label of particle ρj , Wqi = 1 if there is an
edge between the current node and the node vi, and Wqi = 0
otherwise. A particle stays on the chosen node only if, after
applying (2), its class domination level is the largest on that
node; otherwise, a shock happens and the particle goes back to
the node it was before, and stays there until the next iteration.

The average maximum domination levels of the nodes
(〈vωm

i 〉, m = argmaxc v
ωc
i ) is used to identify when the

algorithm reached stability. This value may never converge,
as there may be intense dispute on the nodes in classes’
frontiers. Therefore, the iterations are stopped when there is
no increase in this measure for a considerable amount of
iterations. When it happens, most nodes are dominated by a
single class. Therefore, for every node vi, if vωc

i > 0.9, the
class c is assigned to the corresponding pixel y(xi) = c, and
the remaining nodes (if any) are left unlabeled for now, as the
algorithm has low confidence in the label it would assign to
them.

If unlabeled nodes still exist, the algorithm begins its
second phase. At this point, the unlabeled pixels are mostly
those that were under intense dispute by two or more classes,
and/or those that were unreachable by all the particles. The
second scenario may happen if a pixel (or set of pixels) are
too different from any labeled pixels, specially when k is low,
which may lead to a disconnected graph.

During the second phase, at each iteration, each unlabeled
pixel xi will set its corresponding vωi as follows:

vωi (t+ 1) =
1

a

∑
j∈η

vωj (t) dist(xi, xj), (5)

where η ⊂ X is the subset of the a adjacent pixels of xi.
a = 8, except on pixels from the border of the image, which
have only 3 or 5 adjacent pixels. dist(xi, xj) is a function that
returns the Euclidean distance between xi and xj features. So,
each unlabeled pixel will get contributions from its adjacent
pixels, which are proportional to the similarity it has to each



of them. The second phase ends when 〈vωm
i 〉 stabilizes. The

remaining unlabeled pixels are then labeled using y(xi) =
argmaxc v

ωc
i (t).

IV. COMPUTER SIMULATIONS

In this section, computer simulation using real-world im-
ages are presented in order to show the effectiveness of the
proposed method. The parameters k and λ are optimized for
each image using the genetic algorithm available in Global
Optimization Toolbox of MATLAB, with its default parame-
ters.

Figure 1a shows an original image with 576× 432 pixels.
A trimap providing seed regions is presented in Figure 1b.
Black (0) represents the background, ignored by the algorithm;
dark gray (64) is the labeled background, which generates
background class particles; light gray (128) is the unlabeled
region, which labels will be estimated by the proposed method;
and white (255) is the labeled foreground, which generates
the foreground class particles. Figure 1c shows the close-
up foreground segmentation results achieved by the proposed
method.

In order to compare the proposed method segmentation
accuracy with those obtained by state-of-the-art methods,
computer simulations are performed on five images from
the Microsoft GrabCut dataset 1 [9]. The Grabcut dataset is
used to evaluate interactive segmentation methods in many
papers, thus the proposed method results may be compared
with those achieved by other methods. Those specific five
images were selected because the error rate and close-ups
foreground images obtained on them by a few state-of-the-
art algorithms are presented in [7], therefore one can compare
those results with the results achieved by the proposed method,
both numerically and visually. The five images, the trimaps
providing seed regions, and the original ground truth are shown
on Figure 2.

Figure 3 shows the close-up foreground segmentation re-
sults obtained using the proposed method, as well as the
classification error rates. The error rates are computed as the
ratio of the number of incorrectly classified pixels to the total
amount of unlabeled pixels (light gray on the trimap images).
Notice that the ground truth images (Figure 2c) have a thin
band of gray pixels which corresponds to uncertainty, i.e.,
pixels that received different labels by the multiple persons
who annotated them. These pixels are not counted in the error
rate calculation, as done in [7], to ensure consistency. By
comparing the results on Figure 3 with those presented in [7],
the proposed method achieved lower error rates in three of the
five images. Table I shows the error rate comparison between
the directed hypergraph model(DINH) [7] and our proposed
particle competition and cooperation method (PCC).

Table II shows the error rates and optimized parameters
values used for each of the segmented images on Figure 3.
Even though the variation is high, by observing this table one
can notice that the two most important features are probably
those related to the pixel location on the image, followed by
the V (value) component on HSV. It is interesting to observe

1Available at http://research.microsoft.com/en-us/um/cambridge/projects/
visionimagevideoediting/segmentation/grabcut.htm

(a)

(b)

(c)

Fig. 1. (a) Original image, (b) trimap providing seed regions, and (c) close-up
foreground segmentation results by the proposed method.



(a) (b) (c)

Fig. 2. (a) Original images from the GrabCut dataset, (b) the trimaps providing seed regions, and (c) the original ground truth.



(a) Error rate: 6.19% (b) Error rate: 7.67%

(c) Error rate: 1.53% (d) Error rate: 1.24%

(e) Error rate: 1.09%

Fig. 3. Close-up foreground segmentation results from the proposed method.

TABLE I. COMPARISON OF THE ERROR RATES OBTAINED BY THE
DIRECTED HYPERGRAPH MODEL (DINH) [7] AND THOSE OBTAINED BY

OUR PROPOSED PARTICLE COMPETITION AND COOPERATION METHOD
(PCC)

Image DINH PCC

208001 (mushroom) 3.65% 6.19%
271008 (children) 5.12% 7.67%
person7 2.82% 1.53%
sheep 5.85% 1.24%
124084 (flowers) 3.51% 1.09%

that, in fact, many earlier segmentation methods actually rely
only on pixel coordinates and luminance values, ignoring other
color components.

V. CONCLUSION

This paper proposes a new nature-inspired interactive
segmentation method based on the semi-supervised learning
method known as particle competition and cooperation. In this
method, particles walk in a graph generated from the image
to be segmented. Particles representing the same object/class
cooperate with each other to dominate the unlabeled pixels,
while particles representing different object/classes compete
against each other to avoid invasion from enemy particles in the
nodes they already dominated. Pixels that are labeled with low
confidence by the particle competition and cooperation method
pass through a second phase, where they get contribution from
their adjacent pixels in the original image, in order to get their
definitive label.

Some computer simulations using real-world images were
performed. The proposed method has showed foreground seg-
mentation accuracy, which is comparable to those, achieved
by some state-of-the-art methods, and even slightly better
accuracy in some specific images. As future work, we intend
to segment a larger set of images, to refine the model, and
to find some pattern that may arise in the optimal choice of
parameters, so they could be automatically selected based only
on image properties.
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