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ABSTRACT

Semi-supervised learning methods exploit both labeled and
unlabeled data items in their training process, requiring only
a small subset of labeled items. Although capable of dras-
tically reducing the costs of labeling process, such methods
are directly dependent on the effectiveness of distance mea-
sures used for building the kNN graph. On the other hand,
unsupervised distance learning approaches aims at capturing
and exploiting the dataset structure in order to compute a
more effective distance measure, without the need of any la-
beled data. In this paper, we propose a combined approach
which employs both unsupervised and semi-supervised learn-
ing paradigms. An unsupervised distance learning procedure
is performed as a pre-processing step for improving the kNN
graph effectiveness. Based on the more effective graph, a
semi-supervised learning method is used for classification.
The proposed Combined Unsupervised and Semi-Supervised
Learning (CUSSL) approach is based on very recent methods.
The Reciprocal kNN Distance is used for unsupervised dis-
tance learning tasks and the semi-supervised learning classifi-
cation is performed by Particle Competition and Cooperation
(PCC). Experimental results conducted in six public datasets
demonstrated that the combined approach can achieve effec-
tive results, boosting the accuracy of classification tasks.

Index Terms— Semi-Supervised Learning, Unsuper-
vised Learning, Data Classification

1. INTRODUCTION
Semi-Supervised learning is a class of machine learning
techniques which is receiving increasing interest in the last
decade. These techniques combine both labeled and unla-
beled data items in their training process. Therefore, they are
usually applied in data sets in which only a small subset of
data items may be effectively labeled, due to the high costs
and time required in the labeling process [1–3].
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Fig. 1: Overall work-flow of combined method: in green
dashed box, the unsupervised distance learning method (Re-
ciprocal kNN Distance); in red dashed box, the semi-
supervised learning method used for classification (Particle
Competition and Cooperation).

Recently, a new semi-supervised learning approach,
known as Particle Competition and Cooperation (PCC) was
proposed [4]. Particles, which correspond to labeled data,
walk in non-weighted and undirected graphs, where each
node corresponds to a data item and edges are created be-
tween nodes corresponding to similar data items. Particles
representing the same class cooperate with each other, at the
same time that they compete against particles representing
other classes. They aim to dominate the unlabeled nodes,
spreading their respective label, and preventing invasion by
particles representing other labels. At the end of the process,
each unlabeled node is labeled with the label of the particles
group that has dominated it.

PCC graphs are usually built by connecting each node to
its k-nearest neighbors, according to the Euclidean distance
between the corresponding data items [4–6]. However, the
graph formation step has major impact in the final classifica-
tion accuracy in many graph-based approaches, including the
PCC. Recently, it has been shown that different distance mea-
sures affects the PCC classification results, and the more ap-
propriate distance measure depends on the input data set [7].
Therefore, in order to achieve better classification accuracy, it
is indispensable to put research efforts on methods for build-
ing a better k-NN graph. An effective approach to build a
more effective graph consists in using an unsupervised dis-
tance learning step, which do not require any extra training
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information.
Thus, this paper proposes a novel approach named Com-

bined Unsupervised and Semi-Supervised Learning (CUSSL),
which aims at exploiting both unsupervised and semi-supervised
paradigms for a better classification. A recent unsupervised
distance learning approach based on the Reciprocal kNN Dis-
tance [8] is used to compute a more effective graph. Next, the
computed graph is used by a semi-supervised PCC method
in classification tasks. To the best of our knowledge, this is
the first attempt to combine semi-supervised classification
methods with unsupervised distance learning approaches.
Computer simulations are performed on some artificial and
real-world data sets. The high classification accuracies ob-
tained demonstrate that the proposed approach can improve
the effectiveness of the regular Particle Competition and
Cooperation (PCC) method.

The paper is organized as follows. Section 2 presents the
proposed combined approach. Section 3 describes the Recip-
rocal kNN Distance used for unsupervised distance learning
tasks. Section 4 describes the PCC method used on semi-
supervised learning step classification. Section 5 presents the
experimental evaluation and the results of computer simula-
tions. Finally, Section 6 discusses the conclusions.

2. COMBINED UNSUPERVISED AND
SEMI-SUPERVISED LEARNING (CUSSL)

In the proposed approach, an unsupervised distance learning
procedure is performed as a pre-processing step for the graph
construction. Diverse methods have been proposed in order to
improve the effectiveness of distance measures in an unsuper-
vised manner [9–17]. The main motivation of such initiatives
consists in to exploit the intrinsic dataset structure for com-
puting a more effective distance measure among collection
objects, without the need of any training data. Generally, the
classic distance measures are replaced by more global mea-
sures in order to obtain the k nearest neighbors. In fact, data
samples are often modeled as high dimensional points in an
Euclidean space. However, the data samples often live in a
much lower-dimensional intrinsic space. Consequently, cap-
turing and exploiting the manifold structure constitute a cen-
tral problem for effective distance computation [12].

Recently, an unsupervised distance learning approach,
known as Reciprocal kNN Distance, was proposed to provide
a more effective distance measure in image retrieval scenar-
ios [8]. It takes into account the intrinsic dataset structure
by analyzing the reciprocal references at top rank positions.
The modelling in terms of rank information enables its use in
many other scenarios, specially in cases which require the the
computation of k nearest neighbors, as the PCC.

Figure 1 illustrates the overall work-flow of the Combined
Unsupervised and Semi-Supervised Learning approach. The
Reciprocal kNN Distance consider the Euclidean distance as
input and computes a new and more effective distance mea-
sure between pair of data items. In this step, no labeled data

is required. In the following, the new computed distance is
used to build a graph in which the PCC based algorithm is
then applied for classification through semi-supervised learn-
ing. In this way, although independent from each other, the
two methods are combined to achieve better classification ac-
curacy. A formal definition of learning models considered by
the proposed approach is presented in next section.

2.1. Unsupervised and Semi-Supervised Learning Mod-
els
Let X = {x1, x2, . . . , xL, xL+1, . . . , xN} be a data collec-
tion, where each element xi denotes a data item. The collec-
tion X can be defined as a partially labeled data set, where
XL = {xi}Li=1 is the labeled data items subset and XU =
{xi}Ni=L+1 is the unlabeled data items subset.

Let vxi be a feature vector defined in Rn, which represents
the data item xi. Let d: Rd × Rd → R be a distance func-
tion (as the Euclidean distance), which computes the distance
between two data items according to their corresponding fea-
ture vectors. Formally, the distance between two data items
xi and xj is given by d(vxi , vxj ). For readability purposes,
the notation d(i, j) is used along the paper.

Based on the distance function d, a ranked list τq can be
computed for obtaining the most similar data items to a given
data item xq . The ranked list τq=(x1, x2, . . . , xN ) can be
formally defined as a permutation of the collection X. For a
permutation τq , we interpret τq(i) as the position (or rank) of
the data item xi in the ranked list τq . We can say that, if xi
is ranked before xj in the ranked list of xq , that is, τq(i) <
τq(j), then d(q, i)≤ d(q, j). A ranked list τi can be computed
for every data item xi ∈ X, in order to obtain a set T = {τ1, τ2,
. . . , τN} of ranked lists.

The objective of the unsupervised distance learning step
consists in redefining the distance d by computing a more ef-
fective distance function dr. In a math notation: dr: X ×
X × T → R is a distance function between two data items
xi, xj ∈ X that considers the rank information encoded in the
set of ranked lists T . For the unsupervised distance learning
procedure, all data items from the collection X are consid-
ered, both labeled and unlabeled items. However, no label
information is exploited.

The semi-supervised learning step uses the information
encoded in the distance function dr for estimating the label
of unlabeled data items. Let L = {1, . . . , C} be a set which
contains the labels of the dataset. Let y : X→ L be a function
which associates each xi ∈ X to its label y(xi) in the final
classification results. The semi-supervised learning procedure
can be formally defined as the estimation of function y(xi) for
each unlabeled data item xi ∈ XU .

The next sections describe the Reciprocal kNN Distance
and the PCC method, used for the unsupervised and semi-
supervised steps, respectively.



3. RECIPROCAL KNN DISTANCE
The Reciprocal kNN Distance [8] models a data collection in
terms of ranking information, defining a more effective dis-
tance measure by analyzing the reciprocal references at top
ranked positions. The ranked lists define relationships not
only between pairs of objects as distance functions, but con-
sidering among all objects found in a ranked list [8, 18].

Additionally, the k-reciprocal nearest neighborhood rela-
tionship is a much stronger indicator of similarity than the
unidirectional nearest neighborhood, mitigating the risk of
false positives at top positions of ranked lists [8, 19]. The
Reciprocal kNN Distance is formally described in follow sec-
tions.

3.1. Reciprocal Neighborhood
Given a data item xq , we can define a neighborhood set that
contains the k most similar data items to xq as N (q, k). For
the k-nearest neighbor query, we have |N (q, k)| = k, which
is formally defined as follows:
N (q, k) = {S ⊆ X, |S| = k ∧ ∀xi ∈ S, xj ∈ X− S :

τq(i) < τq(j)}.
(1)

The nearest neighbor relationships are not symmetric [17,
19], i.e., xi ∈ N (q, k) does not imply xq ∈ N (i, k). The
k-reciprocal neighborhood set of a data item xq can be de-
fined [19] as:

Nr(q, k) = {xi ∈ N (q, k) ∧ xq ∈ N (i, k)}. (2)
Based on the reciprocal neighborhood set Nr(q, k), a bi-

nary function fr : X×X→ {0, 1} is defined for determining
if two data items xq , xi ∈ X are reciprocal neighbors:

fr(q, i) = |Nr(q, k) ∩ {xi}|. (3)
The function fr is defined as 1 if data items xq and xi are

reciprocal neighbors, and 0 otherwise.

3.2. Reciprocal kNN Distance
The Reciprocal kNN Distance between two data items xq, xi
∈ X is computed based on the number of reciprocal neigh-
bors at top positions of ranked lists τq, τi ∈ T . Additionally,
a weight for each pair of reciprocal neighbors is considered,
proportionally to their position in the ranked lists τq and τi.
In this way, the incidence of reciprocal neighbors at top po-
sitions of ranked lists is considered more relevant. The score
based on the number of reciprocal neighbors and its respec-
tively weights are given by the function nr(q, i), defined as
follows:

nr(q, i) =

∑
j∈N (q,k)

∑
l∈N (i,k) fr(j, l)× wr(q, j)× wr(i, l)

k4
,

(4)
While the function fr determines if a pair of items (oj ,

ol) are reciprocal neighbors, the weight is computed based on
position of these items in the ranked lists τq and τi, according
to the function wr, defined as follows:

wr(q, j) = k + 1− τq(j). (5)
The value of wr is linearly decreasing, ranging from k

assigned to the first position to 1, at the kth position. The
divisor k4 in Equation 4 is defined considering the maximum

value of reciprocal neighbors (k2) and the maximum values
of wr. The Reciprocal kNN Distance is defined as the inverse
of the number of reciprocal neighbors nr, as follows:

dr(q, i) =
1

1 + nr(q, i)
. (6)

A constant L is introduced aiming at limiting the compu-
tational complexity of the distance learning procedure. Once
the top positions of ranked lists are expected to contain the
most relevant data items, the distance learning can be per-
formed considering only the beginning of the ranked lists.
Therefore, the ranked lists are processed only until the L po-
sition, keeping its complexity of O(N). In this way, the pa-
rameter L establishes a trade-off between effectiveness and
efficiency, specially for large scale datasets. The function dr
is redefined for consider the value of L as follows:

dr(q, i) =

{ 1
1+nr(q,i) , if τq(i) ≤ L,
τq(i), otherwise.

(7)

Finally, a new set of k-nearest neighborsNrd(q, k) can be
obtained based on the Reciprocal kNN Distance. The set is
formally defined as follows:
Nrd(q, k) = {S ⊆ X, |S| = k ∧ ∀xi ∈ S, xj ∈ X− S :

dr(q, i) 6 dr(q, j)}.
(8)

The set is obtained aiming at computing the k-NN graph
used by the semi-supervised learning step. An undirected
graph G = (V,E) is generated from the data collection X,
in which V = {v1, v2, . . . , vN} is the set of nodes, and E is
the set of edges (vi, vj). Each node vi corresponds to a data
item xi. Two nodes vi and vj are connected if vj ∈ Nrd(i, k)
or vi ∈ Nrd(j, k).

4. PARTICLE COMPETITION AND COOPERATION
Overall, the semi-supervised learning particle competition
and cooperation approach [4] may be described as follows.
Each graph node in an undirected and non-weighted graph
represents a data item. Edges are created between nodes rep-
resenting similar data items. A particle is created for each
labeled node. Particles will walk through the nodes, following
a random-greedy rule to select the next node to visit among
the neighbors of the current node. Particles corresponding to
nodes with the same label belong to the same team, thus they
cooperate with each other to dominate the unlabeled nodes.
Particles in different teams compete against each other for the
possession of the nodes. Each node has a set of domination
levels, each of them representing a team of particles. Particles
increase their team domination level in the nodes they visit, at
the same time that they decrease other teams domination lev-
els. At the end of the iterative process, each node is labeled
accordingly to the class of the team which has the highest
domination level on it.

Formally, for each node vi ∈ {v1, v2, . . . , vL} of the
graph G, a particle ρi is generated and its initial position
is set to vi. Each particle ρj has a variable ρωj (t) ∈ [0, 1]
equivalent to the particle strength, which defines how much



a particle impacts a node it is currently visiting. Parti-
cles always begin with their maximum strength, ρωj (0) =

1. Each particle ρj also has a distance table, ρdj (t) =

{ρd1j (t), ρd2j (t), . . . , ρdnj (t)}, where each element ρdij (t) ∈
[0, n − 1] corresponds to the distance measured between
the particle’s initial node vj and any node vi. The distance
table is dynamically updated as the corresponding particle
walks.

Each node vi has a domination vector vωi (t), where each
element vωci (t) ∈ [0, 1] corresponds to the domination level
from the team/class c over the node vi. The sum of the domi-
nation levels in each node is always constant,

∑C
c=1 v

ωc
i = 1.

In the nodes corresponding to labeled data items, the dom-
ination levels are fixed. They are set to have complete domi-
nation by the corresponding class and none for the others. On
the other hand, nodes corresponding to unlabeled data items
have variable domination levels. They begin with all classes
domination levels set equally, but particles change these levels
when they pay a visit. Thus, for each node vi, the domination
vector vωi is set as follows:

vωci (0) =

 1 if xi is labeled and y(xi) = c
0 if xi is labeled and y(xi) 6= c
1
C if xi is unlabeled

. (9)

Every time a particle ρj visits any unlabeled node vi, the
node domination levels are updated as follows:

vωci (t+ 1) =


max{0, vωci (t)− ∆vρ

ω
j (t)

C−1 }
if c 6= y(ρj)

vωci (t) +
∑
r 6=c v

ωr
i (t)− vωri (t+ 1)

if c = y(ρj)

,

(10)
where 0 < ∆v ≤ 1 is a parameter to control the changing
rate, and y(ρj) represents the class of particle ρj . A particle
ρj changes the node vi it is visiting by increasing the dom-
ination level of its class (vωci , c = y(ρj)) at the same time
that it decreases the domination levels of other classes (vωci ,
c 6= y(ρj)). Since labeled nodes have fixed domination levels,
(10) does not apply to them.

A particle may get stronger or weaker according to the
domination level of its class in the node it is currently visiting.
At each iteration, the particle strength is updated, ρωj (t) =
vωci (t), where vi is the node being visited, and c = y(ρj).

At each iteration, a particle ρj chooses a node vi to visit
among the neighbors of its current node. The probability of
choosing a node vi is given by: a) the particle class domi-
nation on it, vωci , and b) the inverse of its distance, ρdij , as
follows:

p(vi|ρj) = (1− pgrd)
Wqi∑n
µ=1Wqµ

+ pgrd
Wqiv

ωc
i (1 + ρdij )−2∑n

µ=1Wqµv
ωc
µ (1 + ρ

dµ
j )−2

,

(11)

where q is the index of the node being visited by particle ρj ,
c is the class label of particle ρj , Wqi = 1 if there is an edge

Table 1: Classification Accuracy on the Iris data set with 2%
to 10% labeled samples

Labeled 2% 4% 6% 8% 10%
PCC 90.44% 89.77% 90.52% 91.23% 91.77%
CUSSL 92.07% 91.42% 91.43% 92.17% 92.89%

between the current node and the node vi, and Wqi = 0 oth-
erwise. A particle stays on the chosen node only if, after ap-
plying (10), its class domination level is the largest on that
node; otherwise, a shock happens and the particle goes back
to the previous node and stays there until the next iteration.
0 ≤ pgrd ≤ 1 controls the balance between randomness and
greediness in the probabilities.

For further details on the original particle competition and
cooperation algorithm, see [4].

5. COMPUTER SIMULATIONS
In this section, computer simulation using some artificial
and real-world data sets are presented in order to show the
effectiveness of the proposed method. For each data set,
we applied both the original PCC method and the proposed
method (CUSSL). For PCC, the parameter k defines the size
of k-neighborhood (amount of nearest neighbors) for the
graph construction using the Euclidean distance (L2). For
CUSSL, two parameters are considered: (i) the size of k-
neighborhood used by the unsupervised distance learning
algorithm, referred in this section as kr; and (ii) the size of
k-neighborhood for the graph construction, referred in this
section as kn.

The parameters pgrd = 0.5 and ∆v = 0.1 are fixed in all
experiments with both PCC and CUSSL. These values were
chosen because they were used in previous PCC applications
[5, 6, 20]. Notice that one could still optimize pgrd and ∆v

in each experiment to further increase classification accuracy
in both PCC and CUSSL. The other parameters were chosen
by performing a search over the following grid: k, kr, kn ∈
{20, 30, 40, 50, 60, 70}. The parameter L was defined as sug-
gested by [8].

Tables 1 and 2 show the classification accuracy when PCC
and CUSSL are applied to the Iris data set and to the Wine
data set [21], respectively. The best accuracy results for each
configuration are highlighted. For each graph configuration,
2% to 10% data items are randomly chosen to compose the
labeled subset, which data items are presented to the algo-
rithm with their respective labels. The remaining data items
are presented to the algorithm without their labels, so it can
classify them. For each graph configuration and labeled sub-
set size, the experiment is repeated 1, 000 times with different
labeled subsets, so each value in these tables is the average of
the 1, 000 executions. These results are plotted on Figures 2
and 3.

Tables 3 and 4 show the classification accuracy when PCC
and CUSSL are applied to Digit1, COIL, USPS, and g241c
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Fig. 2: Classification Accuracy on the Iris data set with 2% to
10% labeled samples

Table 2: Classification Accuracy on the Wine data set with
2% to 10% labeled samples

Labeled 2% 4% 6% 8% 10%
PCC 93.24% 92.54% 93.26% 94.13% 94.89%
CUSSL 94.17% 94.84% 95.13% 95.39% 95.74%

data sets 1 [2]. For each data set, there are 12 subsets of 10
labeled data points and 12 subsets of 100 labeled data points,
which were randomly chosen and provided by [2]. Table 3
shows the results for the 10 labeled data points subsets and
Table 4 shows the results for the 100 labeled data points sub-
sets. For each graph configuration, both algorithms are ap-
plied using each of the 12 labeled subsets. For each subset,
the experiment is repeated 100 times. Therefore, each value
shown in these tables is the average of 1200 executions, i.e.
100 in each of the 12 labeled subsets.

Figure 4 shows the classification accuracy achieved by
CUSSL on Digit1, COIL, USPS, and g241c data sets with

1Available at http://www.kyb.tuebingen.mpg.de/
ssl-book/benchmarks.html
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Fig. 3: Classification Accuracy on the Wine data set with 2%
to 10% labeled samples

Table 3: Classification Accuracy on Digit1, COIL, USPS,
and g241c data sets with 10 labeled samples

Dataset Digit1 COIL USPS g241c Mean
PCC 86.91% 39.30% 80.06% 56.96% 65.77%
CUSSL 87.70% 40.76% 82.81% 59.51% 67.28%

Table 4: Classification Accuracy on Digit1, COIL, USPS,
and g241c data sets with 100 labeled samples

Dataset Digit1 COIL USPS g241c Mean
PCC 97.31% 74.21% 93.59% 73.87% 84.73%
CUSSL 97.48% 76.87% 95.19% 73.85% 85.00%
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Fig. 4: Classification accuracy achieved by CUSSL with dif-
ferent combinations of kr and kn on Digit1, COIL, USPS,
and g241c data sets with 10 labeled samples

10 labeled with different combinations of kr and kn.
By analyzing Tables 1 to 4, one can notice that, in most of

the covered scenarios, CUSSL achieved higher classification
accuracy than the PCC method, demonstrating the potential
of the combined approach.

The graph construction step has the highest order of com-
putational complexity, and it is O(NlogN) in both methods,
where N is the amount of data items. The iterative steps is
only O(N), as shown in [4]. Therefore, PCC and CUSSL
have the same computational complexity.

6. CONCLUSION
A combined approach including unsupervised and semi-
supervised methods is discussed in this paper. The proposed
approach performs an unsupervised distance learning step,
without the need of any labeled or training data, through the
Reciprocal kNN Distance. The objective consists in exploit-
ing the intrinsic dataset structure for improving the distance
among data items. Subsequently, a k-NN graph is computed
based on the learned distance and used as input for a semi-
supervised learning step. The semi-supervised learning step
is based on the Particle Competition and Cooperation ap-
proach. It combines both labeled and unlabeled data items in
its training process.

An experimental evaluation was conducted considering
six public datasets, including artificial and real-world data



sets. The computer simulations also considered various dif-
ferent size of labeled sets used in the training procedure. The
vast majority of experimental results demonstrated the bene-
fits of the combined approach, CUSSL, in comparison to the
original PCC method.

Future work focuses on: (i) the use of other unsuper-
vised distance learning approaches as a pre-processing step
for semi-supervised learning classification; and (ii) the inves-
tigation of feature selection to be applied before the unsuper-
vised distance learning procedure.
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