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Abstract

Interactive image segmentation is a topic of many studies in image processing. In
a conventional approach, a user marks some pixels of the object(s) of interest and
background, and an algorithm propagates these labels to the rest of the image.
This paper presents a new graph-based method for interactive segmentation with
two stages. In the first stage, nodes representing pixels are connected to their
k-nearest neighbors to build a complex network with the small-world property
to propagate the labels quickly. In the second stage, a regular network in a
grid format is used to refine the segmentation on the object borders. Despite
its simplicity, the proposed method can perform the task with high accuracy.
Computer simulations are performed using some real-world images to show its
effectiveness in both two-classes and multi-classes problems. It is also applied
to all the images from the Microsoft GrabCut dataset for comparison, and the
segmentation accuracy is comparable to those achieved by some state-of-the-art
methods, while it is faster than them. In particular, it outperforms some recent
approaches when the user input is composed only by a few “scribbles” draw
over the objects. Its computational complexity is only linear on the image size
at the best-case scenario and linearithmic in the worst case.

Keywords: interactive image segmentation, label propagation, complex
networks

1. Introduction

Image segmentation is the process of dividing an image in parts, identifying
objects or other relevant information (Shapiro and Stockman, 2001). It is one
of the most difficult tasks in image processing (Gonzalez and Woods, 2008).
Fully automatic segmentation is still very challenging and difficult to accom-
plish. Many automatic approaches are domain-dependant, usually applied in
the medical field (Christ et al., 2016; Moeskops et al., 2016; Avendi et al., 2016;

? c© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Email address: fabricio.breve@unesp.br (Fabricio Breve)

Preprint submitted to Expert Systems With Applications January 9, 2019



Bozkurt et al., 2018; Martinez-Muñoz et al., 2016; Patino-Correa et al., 2014).
Therefore interactive image segmentation, in which a user supplies some infor-
mation regarding the objects of interest, is experiencing increasing interest in
the last decades (Boykov and Jolly, 2001; Rother et al., 2004; Blake et al., 2004;
Grady, 2006; Ding and Yilmaz, 2010; Price et al., 2010; Li et al., 2010; Artan,
2011; Ding et al., 2012; Ducournau and Bretto, 2014; Breve et al., 2015b,a; Oh
et al., 2017; Wang et al., 2018b; Liew et al., 2017; Wang et al., 2018a; Lin et al.,
2016; Dong et al., 2016; Wang et al., 2016b,a).

The user interaction may take place in different ways, depending on the
choice of the method, including loosely tracing the desired boundaries (Blake
et al., 2004; Wang et al., 2007b), marking parts of the object(s) of interest
and/or background (Boykov and Jolly, 2001; Li et al., 2004; Grady, 2006; Price
et al., 2010; Breve et al., 2015b,a), loosely placing a bounding box around the
objects of interest (Rother et al., 2004; Lempitsky et al., 2009; Pham et al.,
2010), among others. In all scenarios, the goal is to allow the user to select the
desired objects with minimal effort (Price et al., 2010).

This paper focuses on the second type of approach, in which the user “scrib-
bles” some lines on the object(s) of interest and the background. The “scribbles”
are then used as seeds to guide the iterative segmentation process. That is a
popular approach because it requires only a quicker and less precise input from
the user. They can loosely mark broader interior regions instead of finely tracing
near borders (Price et al., 2010).

Graph-cuts is one of the most popular approaches to seeded segmentation,
with numerous methods proposed (Boykov and Jolly, 2001; Boykov and Funka-
Lea, 2006; Rother et al., 2004; Blake et al., 2004; Price et al., 2010; Vicente
et al., 2008). In graph theory, a cut is a partition of the vertices of a graph into
two disjoint subsets (Narkhede, 2013). These methods combine explicit edge-
finding and region-modeling components, modeled as an optimization problem
of minimizing a cut in a weighted graph partitioning foreground and background
seeds (Price et al., 2010).

Other approaches rely on graph-based machine learning (Grady, 2006; Wang
et al., 2007a; Duchenne et al., 2008; Ducournau and Bretto, 2014; Breve et al.,
2015b,a; Oh et al., 2017; Wang et al., 2018b; Dong et al., 2016; Wang et al.,
2016b,a), where the image is modeled as an affinity graph, where edges encode
similarity between neighboring pixels. The segmentation problem may be mod-
eled as an energy function minimization, where the target function is smooth
concerning the underlying graph structure (Ducournau and Bretto, 2014). Some
deep-learning approaches were also recently proposed (Liew et al., 2017; Wang
et al., 2018a; Lin et al., 2016).

The emergence of graph-based techniques is also due to the development
of complex networks theory. In the last decades, the network research moved
from small graphs to the study of statistical properties of large-scale graphs. It
was discovered that a regular network diameter might be drastically reduced by
randomly changing a few edges while preserving its local structure, measured
by clustering coefficient (Watts and Strogatz, 1998). The resulting networks
are called small-world networks and they represent some real networks, like so-
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cial and linguistics networks. Small-world networks have tightly interconnected
clusters of nodes and a shortest mean path length that is similar to a random
graph with the same number of nodes and edges (Humphries and Gurney, 2008).

This paper introduces a new graph-based method for interactive segmen-
tation. It is simpler than many other methods. It does not incorporate any
specific edge-finding or region-modeling components. There is also no explicit
optimization process. The graphs are merely used to propagate the labels from
the “scribbles” to unlabeled pixels iteratively, directly through the weighted
edges. The method has two consecutive stages. In the first stage, a k-nearest
neighbor (k-NN) graph is built based on the similarity among all pixels on a
reduced version of the input image, with each node representing a pixel (a group
of pixels of the original image). In the second stage, the full-size image is used,
a new graph is built with each node representing a single pixel, which is con-
nected only to the nodes representing the 8 adjacent pixels in the image. The
propagation occurs only to the nodes that were not confidently labeled during
the first stage.

The propagation approach has some similarities with that proposed by Wang
et al. (2007a). However, the graph construction is fundamentally different, as in
the first stage nodes are not connected in a grid, but rather based on the color
components and location of the pixels they represent. In this sense, the label
propagation is faster, as the graph usually presents the small-world property of
complex networks (Watts and Strogatz, 1998).

The graph construction phase share some similarities with that proposed by
Breve (2017). However, that approach uses undirected and unweighted graphs
while the current study uses weighted digraphs. The propagation approach is
also completely different. That model uses particles walking through the graph
to propagate label information, in a nature-inspired approach of competition
and cooperation for territory. The proposed method approach is much faster, as
the label information spreads directly through the graph. Finally, the particles
model is stochastic and this proposed model is deterministic.

In spite of its simplicity, the proposed method can perform interactive image
segmentation with high accuracy. It was applied to the 50 images from the Mi-
crosoft GrabCut dataset (Rother et al., 2004) and the mean error rate achieved
is comparable to those obtained by some state-of-the-art methods. Moreover,
its computational complexity order is only linear, O(n), where n is the amount
of the pixels in the image in the best case scenario, and linearithmic, O(n log n),
in the worst case. It can also be applied to multi-class problems at no extra
cost.

The remaining of this paper is organized as follows. Section 2 describes
the proposed model. Section 3 presents some computer simulations to show the
viability of the method. Section 4 discuss the time and storage complexity of the
algorithm and the small-world property of its networks. In Section 5, the method
is applied to the Microsoft GrabCut dataset and its results are compared to those
achieved by some state-of-the-art algorithms. Some parameter analysis are also
conducted in this section. Finally, the conclusions are drawn on Section 6.
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2. Model Description

The proposed algorithm is divided into two stages. In the first stage, the in-
put image is reduced to one ninth of its original size using bicubic interpolation,
and a network is built with each node representing a pixel in the downsized
image. The edges among them are built by connecting each node to its k-
nearest neighbors, in a complex arrangement, which considers both the pixel
location and color. Then, label information is propagated iteratively through
this network. Usually, most pixels are labeled with confidence in this stage.

In the second stage, the full input image is used. Again, each node represents
a single pixel. However, this time, the connections are made only from the pixels
not confidently labeled in the first stage to the nodes representing the adjacent
pixels in the image, in a grid arrangement, which considers only pixel location.
Label information propagates iteratively again, only to the unlabeled nodes.
Therefore, the remaining pixels are labeled at this stage.

In both networks, the same set of pixel features, considering both color and
location, are extracted to define the edge weights. The whole procedure is
detailed in the following subsections.

2.1. The First Stage
In the first stage, the input image is resized to one ninth of its original size

(one third in each dimension) using bicubic interpolation. Then, the set of pixels
of the resized image are reorganized as X = {x1, x2, . . . , xL, xL+1, . . . , xN}, such
that XL = {xi}Li=1 is the labeled pixel subset and XU = {xi}Ni=L+1 is the
unlabeled pixels set. L = {1, . . . , C} is the set containing the labels. y : X→ L
is the function associating each xi ∈ χ to its label y(xi). The proposed model
estimates y(xi) for each unlabeled pixel xi ∈ XU .

The labels are extracted from an image with the user input (“scribbles”),
in which a different color represents each class, and another color is used for
the unlabeled pixels. In the first stage, this image is also resized to one ninth
of its original size, but using the nearest-neighbor interpolation; otherwise, new
colors would be introduced and mistakenly interpreted as new classes.

2.1.1. Graph Generation

For each pixel xi, a set of nine features are extracted. They are shown in
Table 1.

The V component (6) is obtained from the RGB components using the
method described by Smith (1978). ExR, ExG, and ExB (7 to 9) indexes are
obtained from the RGB components as described in the “Image Segmentation
Data Set”1 (Dheeru and Karra Taniskidou, 2017):

ExR = (2R− (G+B)) (1)

ExG = (2G− (R+B)) (2)

ExB = (2B − (G+R)) (3)

1Available at http://archive.ics.uci.edu/ml/datasets/image+segmentation
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Table 1: List of features extracted from each image to be segmented

# Feature Description

1 Pixel row location
2 Pixel column location
3 Red (R) component of the pixel
4 Green (G) component of the pixel
5 Blue (B) component of the pixel
6 Value (V) component of the pixel from a RGB to HSV transform
7 Excess Red Index (ExR) of the pixel
8 Excess Green Index (ExG) of the pixel
9 Excess Blue Index (ExB) of the pixel

The Excess Green Index (ExG) and some of its derivatives are commonly em-
ployed on segmentation of agricultural images (Guijarro et al., 2011). These
indexes are useful for identifying the amount of a color component concerning
the others. In this paper, they are used because they decrease the distance
among pixels representing the same segment which may have different amounts
of incident light.

This set of features was chosen based on some earlier experiments with a
preliminary version of the algorithm which had a single stage and no image
resize step. It was applied to a subset of 9 images from the GrabCut dataset,
with a set of 23 features, including H and S components obtained with the
method described by Smith (1978), and mean (M) and standard deviation (SD)
of RGB and HSV components on a 3× 3 window around the pixel. All features
were normalized to have zero mean and unit variance. After that, each feature
had a weight to be used in the calculation of the distance among pixels. The
weights of the 23 features were optimized using the Genetic Algorithm from
the MATLAB Global Optimization Toolbox, with its default parameters and a
fitness function to minimize the error rate, given by the number of mislabeled
pixels in relation to all unlabeled pixels. Based on the results shown in Table 2,
H and S features were discarded because of their low relevance in most images.
The Mean and Standard deviation based features were discarded because the
current version of the algorithm works on the resized image, so each pixel is
already roughly an average of a 3× 3 window around the pixel. The remaining
features are those presented in Table 1.

In the proposed method, the 9 features from Table 1 are normalized to have
zero mean and unit variance. After that, the components may be scaled by a
vector of weights λ to emphasize/de-emphasize each feature during the graph
generation. However, for simplicity, in all experiments on this paper, only two
set of weights were used as λ. They will be later referenced as:

λ1 = [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0]
λ2 = [1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5]

(4)

Thus, λ1 means all features have the same weight, and λ2 means the two location
features have more weight than the seven color features. While there are many
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Table 2: Preliminary study on a larger feature set with 9 images from the GrabCut dataset
and weights optimized using a Genetic Algorithm.
Image / Feature dog 21077 124084 271008 208001 llama doll person7 sheep teddy Mean

Row 0.99 0.96 0.99 0.44 0.98 0.23 0.97 0.79 0.94 0.44 0.77 (±0.29)
Col 0.80 0.72 0.67 0.91 0.97 1.00 0.34 0.99 0.83 0.39 0.76 (±0.24)
R 0.63 0.03 0.06 0.91 0.45 0.45 0.56 0.58 0.88 0.28 0.48 (±0.30)
G 0.35 0.49 0.25 0.96 0.30 0.28 0.31 0.10 0.54 0.67 0.42 (±0.25)
B 0.96 0.45 0.18 0.36 0.54 0.46 0.26 0.19 0.80 0.39 0.46 (±0.25)
H 0.03 0.04 0.08 0.37 0.07 0.74 0.03 0.15 0.11 0.14 0.17 (±0.22)
S 0.74 0.10 0.06 0.09 0.10 0.30 0.21 0.07 0.10 0.92 0.27 (±0.31)
V 0.65 0.28 0.71 0.94 0.80 0.24 0.18 0.61 0.74 0.29 0.54 (±0.27)

ExR 0.96 0.21 0.06 0.85 0.84 0.79 0.13 0.38 0.12 0.47 0.48 (±0.35)
ExB 0.72 0.36 0.64 0.70 0.42 0.47 0.16 0.83 0.35 0.98 0.56 (±0.25)
ExG 0.75 0.10 0.07 0.22 0.19 0.04 0.78 0.29 0.24 0.32 0.30 (±0.26)
MR 0.11 0.38 0.03 0.35 0.13 0.21 0.78 0.34 0.81 0.22 0.34 (±0.27)
MG 0.13 0.23 0.79 0.30 0.76 0.47 0.70 0.18 0.61 0.93 0.51 (±0.29)
MB 0.49 0.31 0.33 0.42 0.45 0.24 0.15 0.29 0.77 0.80 0.42 (±0.21)
SDR 0.01 0.12 0.06 0.11 0.08 0.38 0.02 0.27 0.20 0.22 0.15 (±0.12)
SDG 0.01 0.08 0.09 0.03 0.09 0.38 0.21 0.02 0.27 0.06 0.12 (±0.12)
SDB 0.00 0.05 0.05 0.04 0.22 0.22 0.06 0.40 0.13 0.01 0.12 (±0.13)
MH 0.58 0.04 0.16 0.91 0.15 0.92 0.03 0.27 0.14 0.86 0.40 (±0.37)
MS 0.65 0.31 0.04 0.06 0.21 0.21 0.36 0.89 0.41 0.67 0.38 (±0.28)
MV 0.02 0.95 0.04 0.35 0.55 0.78 0.66 0.57 0.80 0.25 0.50 (±0.32)
SDH 0.17 0.41 0.19 0.39 0.48 0.32 0.07 0.31 0.38 0.08 0.28 (±0.14)
SDS 0.03 0.41 0.22 0.15 0.18 0.23 0.13 0.50 0.51 0.02 0.24 (±0.18)
SDV 0.61 0.21 0.07 0.10 0.13 0.31 0.03 0.10 0.38 0.24 0.22 (±0.18)

other possible weight combinations, there is not a reliable method to set them
a priori, without relying on the segmentation results.

A directed and weighted graph is created representing the image. It is defined
as G = (V,E), where V = {v1, v2, . . . , vn} is the set of n nodes, and E is the
set of m edges (vi, vj). Each node vi corresponds to a pixel xi. There is an edge
between vi and vj only if vi is unlabeled (xi ∈ XU ) and vj is among the k-nearest
neighbors of vi, considering the Euclidean distance between xi and xj features.
Along with development, it was noticed that k = 10 provides reasonable results
in most images, as long as representative seeds are provided. But this parameter
may be fine-tuned for each specific image to achieve better segmentation results.

For each edge (vi, vj) ∈ E, there is a corresponding weight Wi,j , which is
defined using a Gaussian kernel:

Wi,j = exp
−d(xi, xj)

2

2σ2
(5)

where d(xi, xj) is the Euclidean distance between xi and xj . Along development,
it was noticed that σ is not a very sensitive parameter. Therefore, σ = 0.5 is
fixed for all computer simulations in this paper.

2.1.2. Label Propagation

For each node vi, a domination vector vω
i (t) = {vω1

i (t), vω2
i (t), . . . , vωC

i (t)} is
created. Each element vωc

i (t) ∈ [0, 1] corresponds to the domination level from
the class c over the node vi. The sum of the domination vector in each node is
always constant:

C∑
c=1

vωc
i = 1 (6)

Nodes corresponding to labeled pixels are fully dominated by their corre-
sponding class, and their domination vectors never change. On the other hand,
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nodes corresponding to unlabeled pixels have variable domination vectors. They
are initially set in balance among all classes. Thus, for each node vi, each ele-
ment vωc

i of the domination vector vω
i is set as follows:

vωc
i (0) =

 1 if xi is labeled and y(xi) = c
0 if xi is labeled and y(xi) 6= c
1
C if xi is unlabeled

(7)

Then, the iterative label propagation process takes place. At each iteration
t, each unlabeled node gets contributions from all its neighbors to calculate its
new domination levels. Therefore, for each unlabeled node vi, the domination
levels are updated as follows:

vω
i (t + 1) =

∑
j∈N(vi)

Wi,jv
ω
j (t)∑

j∈N(vi)
Wi,j

(8)

where N(vi) is the set of vi neighbors. In this sense, the new domination vector
vω
i is the weighted arithmetic mean of all its neighbors domination vectors, no

matter if they are labeled or unlabeled.
The iterative process stops when the domination vectors converge. At this

point, vω
i is re-organized to form a bi-dimensional grid, with each vector element

in the same position of its corresponding pixel in the resized image. Then, the
grid is enlarged to the size of the original input image, using bilinear interpola-
tion, so vω

i has a vector for each pixel of the original input image.
When the first stage finishes, most pixels are completely dominated by a

single class. The exceptions are usually the pixels in classes borders. Thus, for
every node vi, if there is a highly dominant class, that class is assigned to the
corresponding pixel:

∀vωc
i = 1, y(xi) = c (9)

where y(xi) is the class assigned to xi. Otherwise, the pixel is left to be labeled
in the second stage.

2.2. The Second Stage

In the second stage, nodes that were not labeled in the first stage continue
to receive contributions from their neighbors. However, in the second stage a
new graph is built, in which every pixel in the input image becomes a node
(no resizing), and each node vi corresponding to an unlabeled pixel (xi ∈ XU )
is connected to the 8 nodes vj representing the adjacent pixels in the original
image, except for pixels in the image borders, which have only 3 or 5 adjacent
pixels. So, in the second phase, neighbors are defined only by location, but the
edge weights are still defined by Eq. (5), using all the nine features.

Notice that the domination vectors vω
i are not reset before the second stage.

The iterative label propagation process in the second stage also uses Eq. (8),
and it stops when the domination vectors converge. At this point, all the still
unlabeled pixels are labeled after the class that dominated their corresponding
node:

y(xi) = arg max
c
vωc
i (10)
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where y(xi) is the class assigned to xi.

2.3. Stop Criterion

In both stages, the convergence is measured through the average maximum
domination level, which is defined as follows:

〈vωm
i 〉,m = arg max

c
vωc
i (11)

for all vi representing unlabeled nodes. 〈vωm
i 〉 is checked every 10 iterative steps

and the iterations stop when the increase is below ω between two consecutive
checkpoints. In this paper, ω = 10−4 is used in all computer simulations.

2.4. The Algorithm

Overall, the proposed algorithm can be outlined as shown in Algorithm 1.

Algorithm 1: The proposed method algorithm

1 Downsize the input image with bicubic interpolation, as described in
Subsection 2.1;

2 Build a directed k-NN digraph for the downsized image, as described in
Subsection 2.1.1;

3 Define the edge weights using Eq. (5);
4 Set nodes’ domination levels by using Eq. (7);
5 repeat
6 for each unlabeled node do
7 Update node domination levels by using Eq. (8);

8 until convergence of the domination levels;
9 Label unlabeled pixel where there is a highly dominant class using Eq. (9);

10 Enlarge the domination levels matrix with bilinear interpolation, as described
in Subsection 2.1.2;

11 Build a directed graph for the original input image, using a grid arrangement,
as described in Subsections 2.2 and 2.1.1;

12 Define the edge weights using Eq. (5);
13 repeat
14 for each unlabeled node do
15 Update node domination levels by using Eq. (8);

16 until convergence of the domination levels;
17 Label remaining unlabeled pixels using Eq. (10);

3. Computer Simulations

In this section, some experimental results using the proposed model are pre-
sented to show its efficacy in the interactive image segmentation task. First,
five real-world images were selected to show that the algorithm can split fore-
ground and background. Later, other two real-world images were selected to
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Table 3: Image sizes and parameters used in the segmentation task.

Image Size λ k

Dog 576× 432 λ1 120
Ball 800× 600 λ1 15
Flower 800× 600 λ1 109
Bird 800× 600 λ2 8
Couple 800× 600 λ2 14
Cartridges 800× 600 λ2 11
Care Bears 512× 384 λ2 15

show the algorithm results segmenting multiple objects at once. For all images,
the parameters are set to their default values, except for k and λ. k is tested
with some values in the interval [1 250] and λ is tested with λ1 and λ2. Then,
the values that produced the best segmentation results are used for each image.
Figure 1 shows: (a) the five images selected to show the segmentation in back-
ground and foreground; (b) the “scribbles” that represent the user input, which
is shown in different colors for background and foreground, over the gray-scale
image; and (c) the segmentation results achieved using the proposed method,
shown as the foreground extracted from the background. Figure 2 shows: (a)
the two images selected to show the multi-class segmentation capabilities of the
proposed method; (b) the “scribbles” representing the user input, which are
shown in different colors for each object and the background; and (c) the seg-
mentation results achieved using the proposed method, with each object shown
separately. Table 3 shows the image sizes and the parameters λ and k used for
each of them.

Notice that the algorithm receives the “scribbles” in a different image or
layer than the image to be segmented. It considers that each color represents a
different segment to be discovered, so the user seeds must be in different colors
for each segment. The images to be segmented were added in black-and-white
as background to the “scribbles” in Figures 1 and 2 for illustrative purposes
only.

By visually analyzing the segmentation results, one can notice that the pro-
posed method was able to interactively segment different kinds of real-world
images, with few mistakes.

4. Computational Time and Storage Complexity

In this section, time and storage complexity order analysis of the algorithm
presented in Subsection 2.4 are provided.

4.1. Computational Time Complexity

At the beginning of the Algorithm 1, step 1 consists in resizing the input
image with bicubic interpolation. This step has complexity order O(n), where
n is the number of pixels in the image. Step 2 consists in building a k-NN
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(a) (b) (c)

Figure 1: Foreground and background segmentation by the proposed method: (a) the real-
world images to be segmented, (b) the “scribbles” provided by the user, and (c) the segmen-
tation results.
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(a)

(b)

(c)

Figure 2: Multi-class segmentation by the proposed method: (a) the real-world images to be
segmented, (b) the “scribbles” provided by the user, and (c) the segmentation results.
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graph. It is possible to find nearest neighbors in logarithmic time using k -d
trees (Friedman et al., 1977). Therefore, this step computational complexity is
O(n log n). Step 3 calculates edges weights. This step depends on the number of
edges. Each node has k edges; therefore, the computational complexity is O(nk).
Step 4 is the initialization of the nodes domination levels, and it depends on the
number of nodes and classes. Therefore, its computational complexity is O(nc).
These first steps are dominated by step 2, which is the network construction as
k and c are usually much smaller than n.

Then we have the loops from steps 5 to 8. The instruction on step 8 consists
in updating the domination levels on a node. Since each node takes contributions
from its neighbors, the computational complexity order is O(k). The inner loop
executes step 7 for all unlabeled nodes. Most nodes are unlabeled; therefore
the inner loop complexity order is O(nk). The outer loop is executed until
the algorithm converges. The convergence depends on the network size and
connectivity, which are related to n and k. Therefore, a set of experiments is
performed, first with increasing image sizes and fixed k, and later with fixed
image size and increasing k, to discover how they impact the number of outer
loop executions. These will be presented and discussed later.

Step 9 consists of checking domination levels and labeling some nodes. Step
10 increases the domination levels matrix using bilinear interpolation. Both
these steps have complexity order O(nc), due to the domination levels matrix
size. In step 11, another graph is built, but only adjacent nodes are connected,
and to exactly 8 other nodes (except for nodes representing image border pixels),
so this step has complexity order O(n). Step 12 is similar to Step 3, but this
time the average node degree is nearly constant, so the complexity order is O(n).

From step 13 to 16, there is another pair of loops. Step 15 runs in constant
time O(1), since all nodes (except those representing image border pixels) have
the same degree (8) no matter the image size. The inner loops execute step
15 for each unlabeled node. In most cases, there is only a small amount of
unlabeled nodes at this point. The outer loop also depends on how many nodes
are still unlabeled in the second stage and also on the network connectivity. In
the typical scenario, there are few unlabeled nodes, and they form isolated sub-
graphs. Though it is difficult to calculate the exact computational complexity
of the second stage, it is lower than O(n log n) in any typical case. The set of
experiments also measures the number of outer loop iterations in the second
stage, as n and k increases.

Finally, step 17 is similar to step 9. It also has complexity order O(nc).
Figure 3 and Tables 4 and 5 show the number of iterations of the outer

loops of the first and second stages, and time required to convergence when the
proposed method is applied to two images from Figure 1: “Dog” and “Bird”
(which are in the first and the fourth row, respectively). Each image and their
respective “scribbles” images are resized to 10%, 20%, . . . , 100% of their original
size, while k = 10 is kept fixed. By analyzing the graphics, it is possible to
realize that as the image size increases, the execution time increase is close to
linear (O(n)). While the first stage inner loop increases linearly on n, the outer
loop does not increase significantly, which is expected due to the small-world
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Figure 3: Number of iterations (left) and time (right) required to the convergence, with images
with 10% to 100% of their original size and k = 10. (a) “Dog” image. (b) “Bird” image. Each
point in time traces is the average of 100 realizations. The error bars represent standard
deviation.

property of complex networks that keep the nodes grouped in clusters, so the
label spreading rate does not change much. The second stage requires only a few
iterations of the outer loop, only 10 in most cases, which is the minimum value
since the convergence check is performed every 10 iteration. Tables 4 and 5 also
show the error rate in each scenario, which is the number of mislabeled pixels
in relation to all the pixels labeled by the algorithm. Notice that the algorithm
labels all the image pixels, except those already covered by the “scribbles”.

Figure 4 and Tables 6 and 7 show the number of iterations of the outer
loops of the first and second stages, and time required to convergence when the
proposed method is applied to the same two images from Figure 1: “Dog” and
“Bird”. However, this time the images are not resized and the out-degree of the
nodes has increasing sizes (k = {10, 20, . . . , 250}). By analyzing the graphics,
it is possible to realize that as k increases, the number of iterations of the first
stage outer loop decreases. This is expected, since the network connectivity
is increasing, and thus the labels have higher spread at each iteration. On
the other hand, the execution time increases because the first stage inner loop
execution time is higher as k increases. However, this increase is only logarithmic
(O(log n)). Tables 6 and 7 also show the error rate in each scenario, which is
calculated as previously described.
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Table 4: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Dog” image with 10% to 100% of its original size and k = 10. Each configuration is
executed 100 times to get the mean and standard deviation of the execution times.
Image Size Width Height Tot. Pixels Ph. 1 Ph. 2 Time (s) Error Rate

10% 183 137 25, 071 410 120 0.25 (±0.02) 0.0018
20% 258 194 50, 052 520 130 0.55 (±0.03) 0.0021
30% 316 237 74, 892 720 110 0.86 (±0.04) 0.0022
40% 365 274 100, 010 740 30 0.99 (±0.05) 0.0041
50% 408 306 124, 848 860 20 1.22 (±0.05) 0.0021
60% 447 335 149, 745 970 20 1.58 (±0.07) 0.0038
70% 482 362 174, 484 950 10 1.85 (±0.08) 0.0038
80% 516 387 199, 692 1050 10 2.13 (±0.10) 0.0018
90% 547 410 224, 270 1090 10 2.51 (±0.13) 0.0036
100% 576 432 248, 832 980 10 2.65 (±0.16) 0.0017

Table 5: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Bird” image with 10% to 100% of its original size and k = 10. Each configuration is
executed 100 times to get the mean and standard deviation of the execution times.
Image Size Width Height Tot. Pixels Ph. 1 Ph. 2 Time (s) Error Rate

10% 253 190 48, 070 870 10 0.49 (±0.07) 0.0031
20% 358 269 96, 302 950 10 1.04 (±0.13) 0.0012
30% 439 329 144, 431 1030 10 1.67 (±0.23) 0.0008
40% 506 380 192, 280 1080 10 2.28 (±0.34) 0.0004
50% 566 425 240, 550 1230 10 3.04 (±0.40) 0.0003
60% 620 465 288, 300 1240 10 3.96 (±0.67) 0.0004
70% 670 502 336, 340 1280 10 5.30 (±0.69) 0.0005
80% 716 537 384, 492 1530 10 6.70 (±1.00) 0.0002
90% 759 570 432, 630 1430 10 8.38 (±1.12) 0.0004
100% 800 600 480, 000 1500 10 10.26 (±1.32) 0.0002
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Figure 4: Number of iterations (left) and time (right) required to the convergence, with images
in their original size and k = 10 to k = 250. (a) “Dog” image. (b) “Bird” image. Each point
in time traces is the average of 100 realizations. The error bars represent standard deviation.
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Table 6: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Dog” image with its original size and k = 10 to k = 250. Each configuration is executed
100 times to get the mean and standard deviation of the execution times.

k Ph. 1 Ph. 2 Time (s) Error Rate
10 980 10 3.00 (±0.39) 0.0017
20 690 10 4.92 (±0.46) 0.0012
30 510 10 5.53 (±0.44) 0.0006
40 400 10 5.69 (±0.47) 0.0006
50 320 10 5.61 (±0.51) 0.0006
60 280 10 5.71 (±0.38) 0.0006
70 250 10 5.87 (±0.41) 0.0005
80 240 10 6.23 (±0.51) 0.0005
90 230 10 6.54 (±0.55) 0.0005
100 210 10 6.55 (±0.54) 0.0005
110 190 10 6.61 (±0.63) 0.0005
120 180 10 6.76 (±0.53) 0.0005
130 170 10 6.90 (±0.55) 0.0005
140 160 10 6.95 (±0.62) 0.0005
150 150 10 6.96 (±0.56) 0.0005
160 140 10 7.02 (±0.59) 0.0005
170 140 10 7.36 (±0.61) 0.0005
180 130 10 7.30 (±0.64) 0.0005
190 130 10 7.60 (±0.72) 0.0005
200 130 10 7.92 (±0.70) 0.0005
210 120 10 7.78 (±0.65) 0.0005
220 120 10 8.17 (±0.83) 0.0005
230 120 10 8.43 (±0.83) 0.0005
240 120 10 8.72 (±0.99) 0.0005
250 110 10 8.39 (±0.65) 0.0005
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Table 7: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Bird” image with its original size and k = 10 to k = 250. Each configuration is executed
100 times to get the mean and standard deviation of the execution times.

k Ph. 1 Ph. 2 Time (s) Error Rate
10 800 10 7.84 (±1.57) 0.0023
20 540 10 9.32 (±1.44) 0.0014
30 450 10 10.46 (±1.54) 0.0015
40 400 10 11.37 (±1.04) 0.0016
50 370 10 12.46 (±1.15) 0.0017
60 340 10 13.25 (±1.20) 0.0020
70 320 10 14.21 (±1.95) 0.0022
80 310 10 15.26 (±1.32) 0.0023
90 300 10 16.19 (±1.52) 0.0024
100 290 10 16.99 (±1.36) 0.0024
110 280 10 17.84 (±1.67) 0.0025
120 270 10 18.45 (±1.43) 0.0025
130 260 10 19.18 (±1.54) 0.0025
140 260 10 20.19 (±2.17) 0.0025
150 250 10 20.81 (±2.11) 0.0026
160 250 10 22.15 (±2.68) 0.0026
170 240 10 22.67 (±2.64) 0.0026
180 240 10 23.62 (±2.48) 0.0026
190 240 10 24.71 (±2.18) 0.0026
200 230 10 24.99 (±2.57) 0.0026
210 230 10 26.15 (±2.80) 0.0026
220 230 10 27.18 (±2.76) 0.0026
230 230 10 28.68 (±3.39) 0.0026
240 220 10 28.89 (±3.72) 0.0026
250 220 10 29.97 (±2.99) 0.0027
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It is worth noting that in real-world problems, c and k do not increase pro-
portionally to n as image sizes increases. The amount of classes c is unrelated
to the image size, and the optimal value of k depends on many factors, like the
image structure, labeled pixels, objects position, and others, but even in similar
images it does not need to increase linearly on n to keep similar network con-
nectivity, as the small-world property of complex networks applies. Therefore,
the average time complexity in the first stage is usually lower than O(n log n).

In this sense, step 2 would dominate the execution time. However, although
step 2 has the highest computational complexity, its execution time is faster
than the first stage loop in all the experiments presented in this paper. It will
undoubtedly dominate the execution time for huge images, but in the typical
scenario, the execution time is still dominated by the first stage (steps 5 to 8).

The second stage execution time is usually negligible. It is very fast when
compared to the first stage and step 2.

In summary, steps 5 to 8 run at linear time O(n) in the best scenario (fixed
k) and linearithmic time O(n log n) in the worst scenario. So, the first stage
dominates the execution time in images of moderate size. Only in huge images,
step 2 would dominate the execution time, and it runs in linearithmic time
O(n log n). Therefore, in most real-world scenarios a time complexity from
O(n) to O(n log n) is expected.

4.2. Storage Complexity

Regarding the memory requirements and storage complexity, the proposed
algorithm uses the following data structures: the resized image, the features
table, the neighbors table, the weights table, the domination vectors, and the
labeled output image. The resized image size is n

9 . The features table is built
from the input image (or the resized image), and it is used to build the graph.
There are 9 features, so the features table size is n in the first stage (which
works with the resized image) and 9n on the second stage. In the first stage,
the neighbors table holds the k-nearest neighbors of each node, so its size is kn

9 .
In the second stage, each neighbor has only 8 neighbors or less, so the neighbors
table size is 8n. The weights table has the same size as the neighbors table in
both stages. The domination vectors hold the pertinence of each node to each
class, so its size is cn

9 in the first stage, and cn in the second stage. Finally,
the labeled output image size is n. As explained before, in real-world problems,
c and k do not increase proportionally to n. So, we may expect that all data
structures grow linearly on n and the storage complexity is O(n).

4.3. Large-Scale Networks

The proposed method was also tested on large images to evaluate its behavior
on large-scale networks. The source picture of the “Dog” image from Figure 1
is used in these experiments. It is a 16 megapixels JPEG image (4608 × 3456
pixels).
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Figure 5: (a) Number of iterations and (b) time required to the convergence with the “Dog”
image with 16 megapixels to 159 megapixels and k = 10. Each point in (b) is the average of
7 realizations. The error bars represent standard deviation.

Table 8: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Dog” image with 16 megapixels to 159 megapixels and k = 10. Each configuration is
executed 7 times to get the mean and standard deviation of the execution times.
Image Size Width Height Tot. Pixels Ph. 1 Ph. 2 Time (s) Error Rate

16 MP 4608 3456 15, 925, 248 1420 10 445.38 (±16.21) 0.0132
32 MP 6517 4888 31, 855, 096 1570 10 870.52 (±64.50) 0.0140
48 MP 7982 5986 47, 780, 252 1680 10 1, 526.19 (±126.27) 0.0140
64 MP 9216 6912 63, 700, 992 1800 10 2, 430.29 (±159.01) 0.0134
80 MP 10304 7728 79, 629, 312 1890 10 3, 261.71 (±201.10) 0.0135
95 MP 11288 8466 95, 564, 208 1990 10 3, 931.04 (±205.11) 0.0137
111 MP 12192 9144 111, 483, 648 2080 10 5, 268.22 (±252.83) 0.0138
127 MP 13034 9776 127, 420, 384 2150 10 6, 387.76 (±365.23) 0.0154
143 MP 13824 10368 143, 327, 232 2240 10 7, 324.84 (±454.97) 0.0157
159 MP 14572 10929 159, 257, 388 2300 10 9, 001.67 (±380.48) 0.0159

In the first experiment, the picture is resized up to 10 times its size, using
bicubic interpolation, to simulate a 159 megapixels picture. After the enlarge-
ment, some Poisson noise is added using the “imnoise” function from the MAT-
LAB Image Processing Toolbox to simulate the noise from a camera sensor.
Otherwise, the enlarged images would look like a set of flat tiles. The same
enlargement is applied to the “scribbles” image, but using the nearest-neighbor
interpolation to avoid the introduction of new colors which would be mistakenly
interpreted as new classes. Figure 5 and Table 8 show the number of iterations
of the outer loops of the first and second stages, and time required to conver-
gence when the proposed method is applied. Table 8 additionally shows the
error rate in each scenario.

In the second experiment, the 16 megapixels picture is used without modifi-
cation, but the out-degree of the nodes has increasing sizes (k = {10, 20, . . . , 250}).
Figure 6 and Table 9 show the number of iterations of the outer loops of the
first and second stages, and time required to convergence when the proposed
method is applied. Table 9 additionally shows the error rate in each scenario.

By analyzing these results, the same patterns seem on the experiments with
smaller images is observed. As the network increases, the amount of first phase
iterations also increases and the execution time increases almost linearly. As
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Figure 6: (a) Number of iterations and (b) time required to the convergence with the “Dog”
image with 16 megapixels and k = 10 to k = 250. Each point in (b) is the average of 10
realizations. The error bars represent standard deviation.

Table 9: Amount of iterations on each algorithm phase, execution times, and error rates on
the “Dog” image with 16 megapixels and k = 10 to k = 250. Each configuration is executed
9 times to get the mean and standard deviation of the execution times.

k Ph. 1 Ph. 2 Time (s) Error Rate
10 3310 10 797.06 (±45.72) 0.0098
20 3730 10 1, 485.54 (±71.60) 0.0115
30 3130 10 1, 882.20 (±70.04) 0.0120
40 2640 10 2, 110.70 (±116.52) 0.0123
50 2380 10 2, 376.00 (±127.28) 0.0125
60 2170 10 2, 607.85 (±133.23) 0.0125
70 1990 10 2, 779.26 (±170.00) 0.0126
80 1830 10 2, 897.11 (±141.70) 0.0127
90 1700 10 2, 994.93 (±107.31) 0.0126
100 1600 10 3, 081.27 (±131.31) 0.0126
110 1530 10 3, 388.25 (±172.80) 0.0127
120 1470 10 3, 662.71 (±161.67) 0.0127
130 1420 10 3, 828.58 (±126.99) 0.0128
140 1380 10 4, 141.11 (±256.80) 0.0128
150 1340 10 4, 307.77 (±140.86) 0.0129
160 1310 10 4, 715.17 (±229.51) 0.0129
170 1290 10 4, 986.44 (±210.99) 0.0130
180 1260 10 5, 323.27 (±262.29) 0.0130
190 1240 10 5, 717.48 (±317.35) 0.0131
200 1220 10 5, 878.81 (±257.88) 0.0118
210 1200 10 6, 047.86 (±166.69) 0.0113
220 1180 10 6, 385.12 (±142.22) 0.0113
230 1160 10 6, 739.01 (±333.90) 0.0112
240 1150 10 7, 176.41 (±328.65) 0.0112
250 1130 10 7, 285.81 (±138.61) 0.0113
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the connectivity increases, the amount of first phase iterations decreases and
the execution time increases logarithmically.

4.4. Small-World-Ness

The proposed method efficiency highly relies on the small-world property
of the networks it generates in its first phase. In particular, when the edges
are created to the k-nearest neighbors of each node, the clustering coefficient is
usually high, so the label information is quickly spread to the neighborhood.

To verify if the small-world property is present on a network, Humphries and
Gurney (2008) proposed a measure called small-world-ness. The small-world-
ness S of a given graph may be calculated as follows:

S =
C

Crand

Lrand

L
(12)

where C and L are the clustering coefficient and the mean shortest path length
of the network, respectively, and Crand and Lrand are the clustering coefficient
and the mean shortest path length observed in random equivalente networks,
i.e., networks with the same amount of nodes and edges. S > 1 indicates the
presence of the small-world property.

Unfortunately, S is undefined for disconnected networks, because in those
scenarios L diverges to infinity. To overcome this drawback, Zanin (2015) pro-
posed an alternative formulation to compute small-world-ness, which uses the
average efficiency of the network instead of the shortest path length since effi-
ciency is defined even for disconnected networks. The efficiency E of a graph G
is calculated as follows:

E(G) =
1

n(n− 1)

∑
i 6=j∈G

1

dij
(13)

where n is the total of nodes in the network and dij denotes the length of the
shortest path between a node i and another node j.

The new efficiency-based small-world-ness SE is then defined as follows:

SE =
C

Crand

E

Erand
(14)

where C and E are the clustering coefficient and the average efficiency of the
network, respectively, and Crand and Erand are the clustering coefficient and the
average efficiency observed in random equivalent networks. SE > 1 indicates
the presence of the small-world property.

Notice that disconnected networks are not a problem for the proposed method.
An unlabeled node only needs a path to a labeled node to get label information.
Even if an unlabeled node does not have a path to a labeled node, it still gets
its label in the second stage. Therefore, the efficiency-based small-world-ness is
used in this paper.

Table 10 shows the measures of small-world-ness, clustering coefficient and
efficiency for the networks built during the proposed method first phase for
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Table 10: Small-world-ness, clustering coefficient, and the average efficiency of the networks
built during the first phase of the proposed method for the “Dog” image with 10% to 100%
of its original size and k = 10. The mean clustering coefficient and mean average efficiency of
20 random network with the same amount of nodes and edges are also shown for comparison.

Image Size SE C E Crand Erand

10% 38.03 0.4301 0.0898 0.0036 0.2816
20% 62.65 0.3923 0.0740 0.0018 0.2591
30% 127.09 0.3851 0.0685 0.0009 0.2234
40% 240.52 0.3739 0.0628 0.0005 0.1874
50% 418.88 0.3718 0.0603 0.0003 0.1610
60% 694.56 0.3683 0.0592 0.0002 0.1374
70% 1045.17 0.3648 0.0567 0.0002 0.1169
80% 1506.40 0.3625 0.0559 0.0001 0.0993
90% 2382.55 0.3606 0.0555 0.0001 0.0827
100% 3943.10 0.3595 0.0544 0.0001 0.0694

the “Dog” image with 10% to 100% of its original size and k = 10. Table 11
shows the same measures for the networks built during the proposed method
first phase for the “Dog” image with its original size and k = 10 to k = 250. In
both cases, the mean clustering coefficient and the mean average efficiency of
20 random networks with the same amount of nodes and edges are also shown
for comparison.

By analysing Tables 10 and 11, one can notice that all the networks have
high small-world-ness levels, clearly showing that they have the small-world
property. In particular, the clustering coefficients are much higher than those
of an equivalent random network.

5. Benchmark

Figures 1 and 2 show segmentation examples on real-world images, where the
user input is limited to a set of “scribbles” on the main object(s) and the back-
ground. The results are qualitatively good as they mostly agree with perceptual
boundaries.

For quantitative results, the proposed method is applied to the 50 images of
the Microsoft GrabCut dataset (Rother et al., 2004). Though there are some
other data sets available with ground truth segmentation results, this one is, to
the best of my knowledge, the only one where seed regions are provided. It is
also the only database which was widely used in other papers; therefore it is pos-
sible to present a quantitative comparison with state-of-the-art methods. Their
original seed regions are not presented as “scribbles”. Instead, they present a
large number of labeled pixels and a narrow band around the contour of objects
to be segmented. In spite of that, the proposed method can be applied to it
without any modification or extra cost.

Table 12 presents a comparison of the average error rates obtained on the
GrabCut dataset (Rother et al., 2004) by the proposed method and other in-
teractive image segmentation methods. The proposed method was first applied
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Table 11: Small-world-ness, clustering coefficient, and the average efficiency of the networks
built during the proposed method first phase for the “Dog” image with its original size and
k = 10 to k = 250. The mean clustering coefficient and mean average efficiency of 20 random
network with the same amount of nodes and edges are also shown for comparison.

k SE C E Crand Erand

10 2599.98 0.3595 0.0544 0.0001 0.0695
20 4490.24 0.3858 0.0780 0.0001 0.0694
30 6446.55 0.3976 0.0935 0.0001 0.0694
40 6570.85 0.4061 0.1044 0.0001 0.0696
50 8705.99 0.4128 0.1134 0.0001 0.0696
60 8098.44 0.4178 0.1208 0.0001 0.0694
70 8161.99 0.4219 0.1272 0.0001 0.0695
80 7588.72 0.4255 0.1331 0.0001 0.0696
90 10167.96 0.4288 0.1385 0.0001 0.0695
100 10150.12 0.4319 0.1433 0.0001 0.0694
110 8386.42 0.4348 0.1475 0.0001 0.0694
120 9803.54 0.4375 0.1516 0.0001 0.0694
130 12145.72 0.4401 0.1556 0.0001 0.0695
140 10484.87 0.4426 0.1592 0.0001 0.0696
150 13139.53 0.4450 0.1627 0.0001 0.0696
160 12865.17 0.4471 0.1659 0.0001 0.0694
170 10555.00 0.4491 0.1689 0.0001 0.0695
180 11310.11 0.4510 0.1718 0.0001 0.0696
190 12677.64 0.4529 0.1747 0.0001 0.0695
200 14342.62 0.4547 0.1774 0.0001 0.0694
210 13331.34 0.4565 0.1801 0.0001 0.0694
220 15375.38 0.4583 0.1826 0.0001 0.0697
230 14912.54 0.4600 0.1851 0.0001 0.0696
240 15552.47 0.4618 0.1875 0.0001 0.0695
250 12742.60 0.4635 0.1899 0.0001 0.0694
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to the whole dataset with its default parameters (k = 10, λ = λ1, ω = 10−4).
In this way, it achieved an error rate of 4.15%. Later, the parameter k was
optimized for each image, and an error rate of 3.21% was achieved.

Figure 7 shows some examples of images from the Microsoft GrabCut dataset
and the corresponding segmentation results. The first column shows the input
images. The second column show “trimaps” providing seed regions. Black (0)
represents the background, ignored by the algorithm; dark gray (64) is the
labeled background; light gray (128) is the unlabeled region, which labels are
estimated by the proposed method; and white (255) is the labeled foreground,
which generates the foreground class particles. The error rates in Table 12 are
computed as the ratio of the number of incorrectly classified pixels to the total
amount of unlabeled pixels. Third and fourth columns show the segmentation
results obtained by the proposed method with its default parameters and with
k optimized for each image, respectively.

5.1. Execution Times

The algorithm was implemented in MATLAB. The loops in both stages were
implemented in C (MEX function). It took an average of 439 milliseconds to
segment each image from the Microsoft GrabCut dataset on a computer with
an Intel Core i7 4790K CPU and 32GB of RAM.

Wang et al. (2018b) presents a comparison of the average running times of 7
representative interactive image segmentation techniques on all 20 test images
of size 321× 481 in the Microsoft GrabCut dataset. They also used an Intel i7
CPU and MATLAB implementations in their tests. Therefore, the same test
was applied to the proposed method and the results are shown in Table 13. The
proposed method was faster than all the other tested methods.

5.2. Parameter Analysis

The proposed method sensitivity to parameter values is analyzed using the
Microsoft GrabCut dataset. In all scenarios, the 50 images of the dataset are
segmented with the default parameters, except for the parameter under analysis.
Figure 8(a) shows the error rates when k = {2, 4, . . . , 40}. Figure 8(b) shows
the error rates when σ = {0.05, 0.10, . . . , 1.00}. Figures 8(c) and 8(d) shows the
error rates and execution times when ω = {10−1, 10−2, . . . , 10−10}.

By analyzing those graphics, one can notice that k = 8 and k = 10 produced
the best results in the k parameter analysis. σ has low sensitivity and has its
best range around σ = 0.4 to σ = 0.7. Finally, ω has decreasing error rates as it
lowers down to ω = 10−4, and then it stabilizes. However, since this parameter
is directly related to the stop criterion, the execution times are higher as ω
decreases. ω = 10−4 offers a good trade-off between execution time and error
rates.

5.3. Seed Sensitivity Analysis

The original “trimaps” from the Microsoft GrabCut dataset provides a large
number of seeds for iterative image segmentation methods. However, the pro-
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Table 12: Comparison of the average error rates obtained on the GrabCut dataset (Rother
et al., 2004) by the proposed method and other interactive image segmentation methods.
The error rates for the other methods were compiled from the works of Ding et al. (2012),
Ducournau and Bretto (2014), Wang et al. (2018b), and Bampis et al. (2017).

Method Error Rate
sDPMNL (boundary) (Ding et al., 2012) 11.43%
GMMVL (location + color + boundary) (Yi et al., 2004) 10.45%
SVM (location + color + boundary) (Chang and Lin, 2011) 9.21%
GM-MRF (Blake et al., 2004) 7.90%
sDPMNL (color) (Ding et al., 2012) 7.65%
Superpixels Hypergraph (Ding and Yilmaz, 2008) 7.30%
Lazy Snapping (Li et al., 2004) 6.65%
Graph Cuts (Boykov and Jolly, 2001) 6.60%
Cost volume filtering (Hosni et al., 2013) 6.20%
Directed Image Neighborhood Hypergraph (Ducournau and Bretto, 2014) 6.15%
RobustPn (Kohli et al., 2009) 6.08%
Grabcut (Rother et al., 2004) 5.46%
Regularized Laplacian (Duchenne et al., 2008) 5.40%
Grady’s random walker (Grady, 2006) 5.40%
Probabilistic Hypergraph (Ding and Yilmaz, 2010) 5.33%
DPMVL (color + boundary) (Ding et al., 2012) 5.19%
Laplacian Coordinates (Casaca et al., 2014) 5.04%
sDPMVL (color + boundary) (Ding et al., 2012) 4.78%
Sub-Markov Random Walk (Dong et al., 2016) 4.61%
Normalized Lazy Random Walker (Bampis et al., 2017) 4.37%
Normalized Random Walker (Bampis et al., 2017) 4.35%
Nonparametric Higher-Order (Kim et al., 2010) 4.25%
Proposed Method (default parameters) 4.15%
Constrained Random Walks (Yang et al., 2010) 4.08%
Lazy Randow Walks (Shen et al., 2014) 3.89%
Robust Multilayer Graph Constraints (Wang et al., 2016a) 3.79%
Texture Aware Model (Zhou et al., 2013) 3.64%
Pairwise Likelihood Learning (Wang et al., 2017) 3.49%
Multi-layer Graph Constraints (Wang et al., 2016b) 3.44%
Proposed Method (optimized k) 3.21%
Random Walks with Restart (Kim et al., 2008) 3.11%
Normalized Sub-Markov Random Walk (Bampis et al., 2017) 3.10%
Difusive Likelihood (Wang et al., 2018b) 3.08%
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(a) (b) (c) (d)

Figure 7: The proposed method applied to the Microsoft GrabCut dataset: (a) input images,
(b) “trimaps” providing seed regions, (c) close-up foreground segmentation results with default
parameters, (d) close-up foreground segmentation results with optimized k.
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Table 13: Comparison of the average running time obtained on all 20 images of size 321× 481
in the Microsoft GrabCut dataset (Rother et al., 2004) by the proposed method and other
interactive image segmentation methods, using the original trimaps. The times for the other
methods were reported by Wang et al. (2018b).

Method Time (s)
Nonparametric Higher-Order (Kim et al., 2010) 11.0
Multi-layer Graph Constraints (Wang et al., 2016b) 5.4
Sub-Markov Random Walk (Dong et al., 2016) 5.1
Diffusive Likelihood (Wang et al., 2018b) 3.4
Laplacian Coordinates (Casaca et al., 2014) 3.2
Grady’s random walker (Grady, 2006) 0.8
GrabCut (Rother et al., 2004) 0.7
Proposed Method (default parameters) 0.3
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Figure 8: The proposed method applied to the Microsoft GrabCut dataset with the default
parameters except for the parameter under analysis: (a) error rates for k = 2 to k = 40, (b)
error rates for σ = 0.05 to σ = 1.00, (c) error rates for ω = 10−1 to ω = 10−10 , (d) execution
times for ω = 10−1 to ω = 10−10 (average of 100 realizations).
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Figure 9: The proposed method with its default parameters applied to the Microsoft GrabCut
dataset with a subset of the original seeds. Each point is an average of 20 realizations with
different random seeds selected: (a) all unlabeled pixels are computed in the error rate, (b)
unlabeled pixels that were originally a seed pixel are not computed in the error rate.

posed method does not need all those seeds to provide reasonable segmenta-
tion results. Therefore, an experiment was set in which each “trimap” from
the dataset had each of its seeds randomly erased with a probability p, so the
changed pixels would appear unlabeled to the method. By varying p from 0
to 0.99, it is possible to generate “trimaps” with roughly 100% to 1% of the
original seeds, respectively. So 2, 000 “trimaps” were generated for each image,
20 of them for each of the 100 configurations of p = {0.00, 0.01, . . . , 0.99}. The
proposed method was applied to all of them. The mean error rates on each
configuration are presented in Figure 9(a).

Notice that while the error rates decrease as the number of seeds decreases
in Figure 9(a), that does not necessarily mean that the segmentation results are
better, because with fewer seeds, there are more unlabeled pixels and each pixel
mislabeled by the algorithm has less impact on the error rate. Thus, Figure
9(b) shows the error rates on each configuration, but excluding the pixels which
were seeds in the original “trimaps” from the error rate computation. These
results showed that the number of seeds may be greatly reduced without much
impact in the error rates.

5.4. Microsoft GrabCut Dataset with “Scribbles”

Andrade and Carrera (2015) presents an objective and empirical evaluation
method for seed-based interactive segmentation algorithms. They have extended
the Microsoft GrabCut dataset by incorporating two sets of “scribbles” for each
of the 50 images2.

The first set of “scribbles” employ four strokes per image, three on the
background and one small area on the foreground object. The second set of
“scribbles” indicate and mark in more detail the foreground region. The two
sets reflect two different degrees of user effort.

2Available at https://github.com/flandrade/dataset-interactive-algorithms
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Table 14: Comparison of the average error rates obtained on the GrabCut dataset (Rother
et al., 2004) by the proposed method and other interactive image segmentation methods, using
the sets of “scribbles” from Andrade and Carrera (2015) The error rates for the other methods
were reported by Bampis et al. (2017).

.
Error

Method S1 S2

Random Walks with Restart (Kim et al., 2008) 6.65% 6.44%
Lazy Randow Walks (Shen et al., 2014) 6.42% 6.12%
Normalized Sub-Markov Random Walk (Bampis et al., 2017) 6.07% 5.81%
Sub-Markov Random Walk (Dong et al., 2016) 6.07% 5.81%
Grady’s random walker (Grady, 2006) 5.58% 2.91%
Laplacian Coordinates (Casaca et al., 2014) 5.37% 3.75%
Normalized Lazy Random Walker (Bampis et al., 2017) 4.80% 2.49%
Normalized Random Walker (Bampis et al., 2017) 4.77% 2.48%
Proposed Method (default parameters) 3.68% 1.60%
Proposed Method (optimized k) 2.28% 1.21%

The proposed method was applied to both sets of “scribbles”. Table 14
presents a comparison of the average error rates obtained by the proposed
method and other interactive image segmentation methods. The proposed
method was first applied to the whole dataset with its default parameters
(k = 10, λ = λ1, ω = 10−4). Later, the parameter k was optimized for each
image. In both scenarios, and for both sets of “scribbles”, the proposed method
outperformed the other 8 methods even with its default parameters.

6. Conclusions

In this paper, a graph-based interactive image segmentation method is pro-
posed. Seeds are provided by the user in form of “scribbles”, loosely traced over
the objects of interest and the background. The method takes advantage of
complex networks properties to spread labels quickly, with low time and storage
complexity. It can be applied to multi-class problems at no extra cost.

Despite its simplicity, the method can achieve classification accuracy com-
parable to those achieved by some state-of-the-art methods when applied to
the Microsoft GrabCut dataset, with their original trimaps used as user input,
which is commonly used to evaluate and compare interactive image segmenta-
tion methods. It is also the fastest method when compared to other 7 methods,
including some classic and some newer state-of-the-art approaches. Moreover,
it achieved the best results when the user input is composed only by a few
“scribbles”, outperforming 8 other recent approaches.

Though the proposed method has some parameters which can be fine-tuned
to achieve better results, usually only k has a significant impact on the classifica-
tion accuracy. The default parameters may be used when the time is restricted.
The user may also fine-tune parameters while adding more “scribbles” if he/she
is not satisfied with the current segmentation results.
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The method may also be extended by introducing edge-finding components
or edge related features to decrease error rates further, and to handle more
challenging segmentation tasks.
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