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Abstract. The present work deals with the analysis of the synchroniza-
tion possibility in chaotic oscillators, either completely or per phase,
using a coupling force between them, so they can be used in atten-
tion systems. The neural models used were Hodgkin-Huxley, Hindmarsh-
Rose, Integrate-and-Fire, and Spike-Response-Model. Discrete models
such as Aihara, Rulkov, Izhikevic, and Courbage-Nekorkin-Vdovin were
also evaluated. The dynamical systems’ parameters were varied in the
search for chaos, by analyzing trajectories and bifurcation diagrams.
Then, a coupling term was added to the models to analyze synchro-
nization in two, a vector and a lattice of oscillators, and finally a lattice
with variable parameters to simulate different biological neurons. Dis-
crete models did not synchronize in vectors and lattices, but the contin-
uos were successful in all stages, including the Spike Response Model,
which synchronized without the use of a coupling force, only by the syn-
chronous time arrival of presynaptic stimuli. However, this model did not
show chaotic characteristics. Finally, in the models in which the previous
results were satisfactory, lattices were studied where the coupling force
between neurons varied in a non-random way, forming clusters of oscil-
lators with strong coupling to each other, and low coupling with others.
The possibility of identifying the clusters was observed in the trajecto-
ries and phase differences of all neurons in the reticulum detecting where
it occurred and where there was no synchronization. Also, the average
execution time of the last stage showed that the fastest model is the
Integrate-and-Fire.

Keywords: Synchronization · Oscillators · Neurons.

1 Introduction

Visual Attention is a technique used by biological neural network systems de-
veloped to reduce the large amount of visual information that it is received by
natural sensors [7]. This mechanism selects a subset of the information com-
ing from the sensors to recognize the environment. This is due to the limited
hardware processing of the neural system of living beings.

The process happens due to factors that can be divided into two types:
bottom-up and top-down. The factors of the first type arise from the combination
of information from the retina and regions at the beginning of the visual cortex,
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that is, the attention occurs due to the scene information. On the other hand,
the second type’s factor is generated by the return signals from areas outside
the visual cortex, so attention is also task-dependent [13, 14].

In 1981, von der Malsburg [17] suggested that each object is represented by
the temporal correlation of neural firing activities, So that these activities are
represented by dynamic models and some can be found at the Cessac’s work [5].
Hence, the correlation encodes different attributes of the object. A natural way
of representing the coding of the temporal correlation is to use synchronization
between oscillators, where each one encodes some attributes of an object [22–24],
so that the synchronized neurons are the ones that process the attributes of the
same object and those that process different objects are out of sync.

The main objective of this research is the studying of synchronization in some
oscillators’ models which exhibit chaotic behaviors. This analysis is to evaluate
the synchronization possibility, both complete and per phase, by using a coupling
force between the oscillators as in Breve et. al work [3].

The oscillators used in this work are based upon the biological neural net-
works which are plausible systems from the biological point of view, as the models
of Hodgkin-Huxley, Hindmarsh-Rose, Integrate-And-Fire, and Spike-Response-
Model [11, 10, 16, 8]. Discrete models with computational advantages were also
used, such as Aihara’s, Rulkov’s, Izhikevic’s and the Courbage-Nekorkin-Vdovin
model [1, 21, 15, 6].

A good model for the visual attention task must allow that a group of oscil-
lators synchronizes with each other if they are strongly coupled, while synchro-
nization is lost compared to other oscillators in the lattice which have a small
coupling force or even nonexistent. In this way, oscillators can be used to repre-
sent pixels or groups of pixels of an image, just as if they were neurons in the
retina, so that neurons representing the same object, synchronize, at the same
time different objects lose synchronization.

The present work is organized in the following: in Section 2 the theoretical
elements will be presented such as the phase synchronization concept and the
coupling term in dynamical systems. In Section 3 it will be shown the neural
dynamical systems used in this work and their analysis, as the search for chaos
and the addition of the coupling force in different structures as two oscillators,
a vector, and a lattice. In Section 4 the results will be discussed, and finally, in
Section 5 it will be presented the conclusion of which model or models satisfies
the methodologies showed in Section 3 for a good model of visual attention.

2 Phase Synchronization

The phase synchronization of two oscillators p and q happens when their phases
difference |φp − φq| is kept below a certain phase threshold and the amplitudes
not necessarily are synchronized (|Xp−Xq| = 0), this means that their rhythms
are bonded. So as t −→∞, |φp − φq| < C. The phase φi at time ti is calculated
as following [20]
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φi = 2πk + 2π
ti − tk
tk+1 − tk

(1)

where k is the number of neural activities prior to time ti , and tk and tk+1 are the
last and the next times of neural activity, respectively. So that two oscillators can
synchronize with each other, a coupling term is added to the dynamical system
as the following:

ẋpj = Fj(X, µ) + k∆p,q (2)

ẋqj = Fj(X, µ) + k∆q,p (3)

where ẋp
j and ẋ q

j represents the time evolution of the xj state of the oscillators
p and q respectively. At right, the Fj (.) represents the behaviour’rate of the
jth state which depends on the states’ vector X = (x1, x2, ..., xj , ..., xJ) and the
parameters’ vector µ = (µ1, µ2, ..., µl, ..., µL), and last the coupling term k∆p,q,
where k is the coupling force and ∆p,q is the difference between the states:

∆p,q = xqj − x
p
j (4)

If k is strong enough, then the oscillators Xp and Xq synchronizes, and it’s
possible by analyzing their phases difference:

lim
t→∞

|φp(t)− φq(t)| < C (5)

where C is a phase threshold.

3 Methodology

The proposed models for the attention system are a two-dimensional network of
neural models’ dynamical systems with coupled terms. The neural models and
their steps in the present work are the following.

3.1 Hodgkin-Huxley

This continuous model is ruled by a membrane potential Vij and the ionic chan-
nels (mij ,nij , hij ), where 1 < i < N and 1 < j < M are rows and columns
positions in the lattice, remembering that the coordinate (i, j) is different from
the sub-indexes i and j in 2, which represents the time and states coordinates
respectively. So the states and constants will be replaced by a matrix represen-
tation as the generic one in 6:

X =



x11 · · · x1j · · · x1M
...

. . .
...

. . .
...

xi1 · · · xij · · · xiM
...

. . .
...

. . .
...

xN1 · · · xNj · · · xNM

 (6)
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So, the equations of the system are:

C ◦ V̇ = −GNa ◦M3 ◦ (V −ENa)−Gk ◦N4 ◦ (V −EK)

−GL ◦ (V −EL) + I(t) + K∆V,
(7)

Ṁ = αm(V) ◦ (1l−M)− βm(V) ◦M + ΞM (8)

Ṅ = αn(V) ◦ (1l−N)− βn(V) ◦N + ΞN (9)

Ḣ = αh(V) ◦ (1l−H)− βh(V) ◦H + ΞH (10)

where ◦ represents the Hadamard product. The V, M, N and H variables are
the states matrices, and µ = (GNa,Gk,Gk,ENa,EK,EK,C) is the parameters
matrices vector. ΞM, ΞN and ΞH are white noises as done in [4], 1l is a matrice
of ones, αx, βx are matrix operations as showed in Table 1:

Table 1: Rate Probabilities of M, N and H
x αx(V/mV )[ms−1] βx(v/mV )[ms−1]

N 0.01(10 - V)/[e(10−V)/10 - 1] 0.125e−V/80

M 0.1(25 - V)/[e(25−V)/10 - 1] 4e−V/18

H 0.07e−V/20 1/[1 + e(30−V)/10]

The electrical current is [9]:

I(t) = I0 ◦ cos(2πft) + Isyn (11)

I0 = N (µ0, σ0) (12)

τsyn ◦ İsyn = −Isyn +
√

2D ◦ N (µ, σ) (13)

Finally, K is a matrix of vectors, as much as ∆V, such that an element of kij
multiplying ∆vi,j is the same as the expression 14:

kij∆vij = k0ij(vi,j+1 − vi,j) + k1ij(vi−1,j+1 − vi,j) + k2ij(vi−1,j − vi,j)
+k3ij(vi−1,j−1 − vi,j) + k4ij(vi,j−1 − vi,j) + k5ij(vi+1,j−1 − vi,j)

+k6ij(vi+1,j − vi,j) + k7ij(vi+1,j+1 − vi,j)
(14)

which represents the coupling term between the oscillator at position (i, j) and
its eight closest neighbors. So for a two-oscillator problem, i = 0 and j = 2, so
there’s only one neighbor, and for a vector case, i = 0 and 1 < j < M , there
are two neighbors. These coupling terms were used in all neural models. The
parameters used were the same as in [11], and its variations study was the same
as the range in table 2 of [11]. For the bifurcation diagram only one oscillator was
used with V0 = 0 and the electrical current varying from zero to 500 µA, while
there was no stochastic term in the ionic channels. After that, the stochastic
terms were added into the model so that the trajectories are unpredictable with
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random initializations between 0 and 5 mV. Also, the electrical current variables
were µ0 = 4 µA, σ0 = 0.001 µA, Isyn = −2 µA, D = 10, N (2.0, 1.0) and the step
time for the 4th-order Runge-Kutta numerical method were T ≈ 0.007, where
T = f−1, and f = 140 Hz as in [19], and the ionic stochastic terms were white
noises with mean equals 0 and standard deviation equals 0.1. Next, the coupling
force was varied from 0.001 to 3.0 for two oscillators, a vector (10 oscillators)
and a lattice of 10x10 oscillators, the same structure configurations for the other
models.

3.2 Hindmarsh-Rose

The model is described by the dynamical variables X, Y and Z which represents
the membrane potential, the recovery variable and the adaptation current [10].
The system is the following:

Ẋ = Y −A ◦X3 + B ◦X2 + I− Z + K∆X (15)

Ẏ = C−D ◦X2 −Y (16)

Ż = R ◦ (S ◦ (X−Xr)− Z) (17)

where µ = (A,B,C,D,R,S,Xr, I) is the vector of parameters and I is the
stimuli current. The values used are the same as in [10] and the variations are
shown in Table 2:

Table 2: Parameters variations for the Hindmarsh-Rose model
Values\Parameters a b c d I r s xr

Interval 1.0 to 2.5 1 to 6 0 to 5 1 to 6 1 to 15 0 to 0.01 1 to 6 -4.8 to 3.2

The bifurcation diagram used the electrical current variation from 0 to 20
µA. Then for the coupling force in a two-oscillator problem, k varied from 0 to
1.2, while for a vector and a lattice it was used k = 5. However, a new range of
parameters was used for a lattice at Table 3.

Table 3: Parameters variations for the Hindmarsh-Rose model in a lattice
Values\Parameters a b c d I r s xr

Interval 1.0 to 1.9 3 to 6 1 to 5 2 to 6 2 to 10 0 to 0.001 1 to 3 -3.2 to 3.2

In all the 4th-order Runge-Kutta experiments, it was used a step time of
0.01.
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3.3 Integrate and Fire

Composed by the variable V and the constants µ = (τ,Vrest,R, I):

τV̇ = −(V −Vrest) + R ◦ I + K∆V (18)

the dynamical system is a one linear differential equation, which means that
there is no chaos in its dynamic, so the current I was replaced by white noise
with a mean (µ) equals 2.5 µA and standard deviation (σ) equals 0.9 to generate
stochastic behavior. The other parameters were set as Vrest = 1.0, while R = 1.0
and τ = 10. The coupling force varied from 0.001 to 1.1, for a vector-oscillator
problem the current was N (3.0, 0.5) and the coupling force was 0.5. For the
lattice, the current was N (10.0, 2.0) while the force was also 0.5. The 4th-order
Runge-Kutta step was 1 ms.

3.4 Spike Response Model

The simplified model (SRM0) with no external current, only with pre-synaptic
stimuli, is described as a lattice of membrane potentials V non-connected with
each other as in the other models, but with pre-synaptic neurons l:

V = η(t− t(f)) +
∑
l

∑
f

Ωl ◦ εl(t− t
(f)
l ) + K∆V (19)

the times t(f) are the times of the last fire of every oscillator vij , while Ωl is
a weight connection between neurons lattice V and the pre-synaptic neurons l,
and η and ε are kernels as:

η(t− t(f)) = −ϑ ◦ e(−(t−t
(f))M+N) ◦Heavside(t− t(f)) (20)

Heavside(t− t(f)ij ) =


0, if t− t(f)ij < 0

−1, if 0 <= t− t(f)ij < 1

1, if 1 < t− t(f)ij

(21)

ε = e(t−t
(f)
l −D)/τ ◦Heavside(t− t

(f)
l −D) (22)

Heavside(t− t(f)ijl − dij) =

{
0, if t− t(f)ijl − dij < 0

1, if t− t(f)ijl − dij >= 0
(23)

where ϑ, M, N, D and τ are matrices of constants, while t
(f)
l is a matrix of last

spikes time of the pre-synaptic neuron l, and tijl is the spike time of the neuron in
position (i,j) of the pre-neuron l. Another constant was added and it was called
limit, which means every limit times, a pre-synaptic spike is generated. For two
and a vector of oscillators it was used two pre-synaptic neurons. As the model
depends on the time and not from the previous vij value, then it was made two
tests, the variation of coupling force from 0.001 to 0.32 and the second test was
the absence of the coupling term but the variation of the limit value for different
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neurons, so for one neuron the interval of time in which the pre-synaptic spikes
arrives is 5, and the other is 6. For a vector, the same two tests were made and
the coupling force varies from 0 to 0.01, while the other test set several oscillators
with the same value of limit and the others were generated randomly.

3.5 Aihara

This chaotic discrete neural model is defined by:

Y(t + 1) = D ◦Y(t)−A ◦ F{Y(t)}+ B + K∆Y(t) (24)

F{Y(t)} =
1l

1l + e(−Y(t)/ε)
(25)

where Y(t) is a neuron internal state and X(t) = F{Y(t)} is a logistic function,
while D, B, A, ε and 1l are constant matrices.

The values were varied as in Table 4 with initialization y(0) = 0.1:

Table 4: Parameters variation for the Aihara model
Values/Parameters D A ε B

Interval 0 to 1 0.7 to 1.2 0.015 to 0.04 0 to 1.0

The bifurcation diagram was generated with the same parameter values as
in [1]. For chaotic trajectories, it was tested several initializations (0.001, 0.01
and 0.1) with A set to 0.35. For the synchronization test, the force was varied
from 0.001 to 0.3 for a two-oscillator problem, and for a vector, it was varied
from 0 to 0.35, while Y(T0) was generated randomly from 0 to 0.0001 due to
its sensibility. Finally, for the lattice, the coupling force varied from 0 to 0.02.

3.6 Rulkov

For a spike and spiking-bursts dynamic, Rulkov developed the following system:

X(t + 1) =
α

1l + X(t)
2 + Y(t) + I + K∆X (26)

Y(t + 1) = Y(t)− µ(X(t)− σ) (27)

where X and Y are the fast and slow variables, while α, I, µ and σ are constants.
The parameters were varied according to the Table 5 and X(t0) = 0, Y(t0) =

−2.9. The current was set to 0 because σ already represents a stimulus. For
chaotic trajectories, α > 4.0 while the other parameters were equal to the ones
in [12]. The variation of the coupling force in a two-problem was from 0.0 to 0.5,
and for a vector and a lattice was from 0.001 to 0.02.
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Table 5: Parameters Variation for the Rulkov model
Values/Parameters α µ σ

Interval 1 to 5 0 to 0.005 -2 to 0

3.7 Izhikevic

The model is described as:

V̇ = 0.04V2 + 5V + 140−U + I + K∆V (28)

U̇ = A ◦ (B ◦V −U) (29)

if vij ≥ 30 mV, then

{
vij ← cij

uij ← uij + dij
(30)

where V and U are variables and A, B,C, D and I are parameters, both di-
mensionless.

The parameters used were the same as in [18] which generates chaos, using
initializations of −64 and −65 mV for a two-oscillator coupling while varying
the force from 0 to 0.6. For a vector and lattice problem, the force was decreased
and increased from 0.06, while the initializations varied from −65 to −65.0001
due to its high sensibility.

3.8 Courbage-Nekorkin-Vdovin (CNV)

Similarly to the Rulkov’s model, the CNV model is:

Ẋ = X + F(X)−Y − βH(X−D) (31)

Ẏ = Y + ε(X− J) (32)

F (xij) =


−m0

ijxij , if xij ≤ Jminij

m1
ij(xij − aij), if Jminij < xij < Jmaxij

−m0
ij(xij − 1), if xij ≥ Jmaxij

(33)

H(xij) =

{
1, if xij ≥ 0

0, if xij < 0
(34)

where,

Jmin =
A ◦M1

M0 + M1
, Jmax =

M0 + A ◦M1

M0 + M1
, M0,M1 > 0 (35)

where X and Y are the fast and slow variables, while ε, β, D (all greater than
0), J, A, M0 and M1 are parameters.

As in [12], it was used the burst-spike alternating behavior for the chaos
analysis. For the coupling tests, the force varied from 0 to 0.1 in a two-oscillator
system, for a vector it varied from 0.05 to 0.5, and finally, in a lattice, the force
varied from 0 to 0.01.
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3.9 Coupling Force Variation

At this stage of the present work, the coupling force was varied such that some
oscillators were strongly coupled and others weakly, so that the first were syn-
chronized and hence clusterized. This stage was present only in the first three
models presented in Section 3, so for the Hodgkin-Huxley model, the synchro-
nization force was set to 3 while the desynchronization values were uniformly
randomly generated between 0 and 0.1. For the Hindmarsh-Rose model, the
parameters varied in the intervals shown in Table 6.

Table 6: Parameters Variation for the Courbage-Nekorkin-Vdovin model
a b c d r s xr I

1 to 1.6 4.0 to 6.0 1.0 to 5.0 2.0 to 5.0 0 to 0.01 1.0 to 2.0 -1.6 to 3.2 1.0 to 9.0

While the coupling force for the synchronization was set to 5, and for the
desynchronization was generated between 0 and 0.01. Finally, for the Integra-
and-Fire model, the threshold was set to 2 mV, the current to 5 mV, the charge
time was randomly generated between 10 and 20, the step time of the Runge-
Kutta was set to 0.5 instead of 1 as in the others simulations, and finally, the
coupling force for sync was 0.5, and for desync was from 0 to 0.01.

4 Results

In this section the results obtained with the computer simulations regarding the
steps and models described in Section 3 are presented. To make it possible to
identify and to separate the clusters from the rest of the lattice, the neurons
must be able to synchronize and desynchronize from each other. They also must
be able to represent a great number of different trajectories, so the properties of
chaos or even the stochastic ones are good approaches to achieve these objectives.

The parameters of the models were varied so that it was possible to find
chaotic properties. The models that presented these objectives were the discrete
and the Hindmarsh-Rose, belonging to the continuous models. The properties of
the latter are mentioned in [10], where the variable Z generates unpredictable
trajectories, thus randomly varying the variables , X, Y, and Z from values be-
tween -1 and 1, generated unpredictable trajectories. In other models, stochastic
terms were added to generate different trajectories, except for the Spike Re-
sponse Model, whose trajectories depend on the arrival time (parameter limit)
of a peak of a presynaptic neuron. These behaviors can be seen in the Figures
1, 2, 3 and 4.

Unlike the other models that produced spikes, the Rulkov model generated
spike explosions and, in the CNV model, it also produced these behaviors inter-
spersed with spikes, but they all have different and unpredictable trajectories,
generated by chaotic or stochastic properties. Then, the models were tested if
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(a) Stochastic Hodgkin-Huxley (b) Chaotic Hindmarsh-Rose

Fig. 1: Random and chaotic neuron models with two different trajectories

(a) Stochastic Integrate-and-Fire (b) SRM with different limit times

Fig. 2: Neuron models with two different trajectories

(a) Chaotic Aihara (b) Chaotic Rulkov

Fig. 3: Chaotic neuron models with two different trajectories

they could synchronize between two neurons of the same models, then in a vector
and finally in a grid so that it represented an image. To measure synchroniza-
tion, the same coupling force was defined between all oscillators (two, a vector
and a grid) so that all could synchronize, and then a phase of a reference oscil-
lator would be necessary to calculate the difference between all other oscillator
phases. If all oscillators are synchronized, then all differences must be below a
certain phase limit, which was determined to be 2π, where the phases of the
differences do not increase with time [2]. Firstly, let’s analyse the continuous
models in Figures 5, 6 and 7.
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(a) Chaotic Izhikevic (b) Chaotic CNV

Fig. 4: Chaotic neuron models with two different trajectories

(a) Trajectories difference (b) Phases difference

Fig. 5: Hodgkin-Huxley Model

(a) Trajectories difference (b) Phases difference

Fig. 6: Hindmarsh-Rose Model

The Figures 5a, 6a and 7a shows the difference in the trajectories, however
none shows a complete synchronization, otherwise the phase synchronization is
clearly observed at the Figures 5b, 6b and 7b in which the difference of phases
evolves in time always below the threshold of 2π. Now, let’s analyze the SRM0

model, which is a particular model of the SRM that there is no external current,
only pre-synaptic stimuli from pre-neurons. The model is also an integration of
linear dynamical systems [8], so do not present chaotic characteristics. However,
as in the Figure 8b shows, those trajectories (4, 5, 6, 7, 8) with different limit
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(a) Trajectories difference (b) Phases difference

Fig. 7: Integrate-and-Fire Model

values of the initial one (0) shows a desynchronization of their phases, while
the trajectories with same limit value as the initial, synchronizes with each
other, showing that neurons that receive neurons’ stimuli at the same time are
synchronized in phase, but that leads to a problem, in a case with thousands
of neurons that must represent an image, synchronizing a particular amount of
them and desynchronizing the other ones, requires that all of them must have
a great variability of different limit values, and a neuron with a time interval
incredibly high is not biologically plausible.

(a) Trajectories difference (b) Phases difference

Fig. 8: Spike-Response-Model

And for the discrete models, the experiments showed that for those ranges in
the coupling force k presented in Section 3, the models did not sync completely or
in phase in the reticle structure of neurons. For different values of coupling force
above or below those ranges shows trajectories behaviors that are not typical of
a relaxation oscillator. So, the desynchronization of the models are showed in
Figures 9, 10, 11 and 12.

Finally, for models that successfully synchronized neurons in a network with
variable parameters, it was tested whether some neurons could synchronize and
others desynchronize by high values of coupling force and low values, respectively,
so that the synchronized neurons can be grouped in a way that they can represent
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(a) Trajectories difference (b) Phases difference

Fig. 9: Aihara’s Model

(a) Trajectories difference (b) Phases difference

Fig. 10: Rulkov’s Model

(a) Trajectories difference (b) Phases difference

Fig. 11: Izhikevic’s Model

an image object in an attention system. The Figures 13a, 14a and 15a show 9
trajectories, six of them synchronized and three unsynchronized, as in the Figures
13b, 14b and 15b, so the synchronization represents the pixels of an object that
receives attention and the desynchronized ones are pixels that do not receive any
type of attention.
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(a) Trajectories difference (b) Phases difference

Fig. 12: Courbage-Nekorkin-Vdovin’s Model

(a) Synchronized and Desynchronized
Trajectories (b) Phases difference

Fig. 13: Hodgkin-Huxley’s Model

(a) Synchronized and Desynchronized
Trajectories (b) Phases difference

Fig. 14: Hindmarsh-Rose’s Model

5 Conclusions

This work proposes to analyze the occurrence of synchronization in oscillators
that have chaotic and stochastic behaviors using a coupling force between oscil-
lators. The studies were done to examine if there are possibilities of using of such
models in visual attention systems. The models used were those based on bio-
logical neural networks such Hodgkin-Huxley, Hindmarsh-Rose, Integrate-and-
Fire, and Spike-Response-Model (SRM), which are biologically plausible, in ad-
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(a) Synchronized and Desynchronized
Trajectories (b) Phases difference

Fig. 15: Integrate and Fire’s Model

dition to discrete-time models such as Aihara, Rulkov, Izhikevic, and Courbage-
Nekorkin-Vdovin (CNV), which have the advantage of reduced computational
cost.

The behaviors of the models’ trajectories were verified by varying their pa-
rameters and analyzing which values lead to chaos. Stochastic terms were added
so they could produce variability in the trajectories. As a result, a coupling term
was applied and analyzed if complete and/or phase synchronization occurred
between two identical oscillators (same parameter values). Then the same study
was applied, first to a vector of equal oscillators, and later to a lattice, both with
equal and variable parameters. Finally, for the models that satisfied the previ-
ous steps, tests were made in a lattice with variable parameters and different
coupling forces to form a cluster of synchronized and desynchronized oscillators.

From this study it was found that the discrete-time models did not synchro-
nize at all stages, failing in the vector’s and lattice’s stages. The continuous-time
models were able to synchronize at all stages using certain values of coupling
force, except for the SRM model which was able to synchronize without the
need of a coupling force, only considering the arrival time of presynaptic stimuli.
However the SRM model did not present chaos. The continuous models tested
for the synchronization and desynchronization for a cluster formation depend-
ing on the coupling force showed a potential solution for an attention system.
Finally, for the successful models, the Integrate-and-fire model showed a better
execution time with a mean in seconds of 1.16 and a standard deviation of 0.05
seconds. As a future work, the synchronization of coupled oscillators will also
be used for a semi-supervised classification method, in which each cluster of
oscillators represents data with the same label.
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