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Abstract. Recent surveys show that smartphone-based computer vi-
sion tools for visually impaired individuals often rely on outdated com-
puter vision algorithms. Deep-learning approaches have been explored,
but many require high-end or specialized hardware that is not practical
for users. Therefore, developing deep learning systems that can make in-
ferences using only the smartphone is desirable. This paper presents a
comprehensive study of 25 di�erent convolutional neural network (CNN)
architectures to tackle the challenge of identifying obstacles in images
captured by a smartphone positioned at chest height for visually im-
paired individuals. A transfer learning approach is employed, with the
CNN models initialized with weights pre-trained on the vast ImageNet
dataset. The study employs k-fold cross-validation with k = 10 and �ve
repetitions to ensure the robustness of the results. Various con�gura-
tions are explored for each CNN architecture, including di�erent opti-
mizers (Adam and RMSprop), freezing or �ne-tuning convolutional layer
weights, and di�erent learning rates for convolutional and dense layers.
Moreover, CNN ensembles are investigated, where multiple instances of
the same or di�erent CNN architectures are combined to enhance the
overall performance. The highest accuracy achieved by an individual
CNN is 94.56% using E�cientNetB4, surpassing the previous best result
of 92.11%. With the use of ensembles, the accuracy is further improved
to 96.55% using multiple instances of E�cientNetB4, E�cientNetB0,
and MobileNet. Overall, the study contributes to the development of
advanced deep-learning models that can enhance the mobility and inde-
pendence of visually impaired individuals.

Keywords: Convolutional Neural Networks · Deep Learning · Com-
puter Vision · Visually Impaired Aid.

1 Introduction

According to the World Health Organization, approximately 2.2 billion people
su�er from some form of visual impairment, including at least 1 billion with
moderate or severe distance vision impairment [40]. The prevalence of distance
vision impairment is signi�cantly higher in low- and middle-income areas com-
pared to high-income regions [34]. This population faces numerous di�culties in
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their daily routines, mostly linked to mobility and navigation. White canes and
guide dogs are currently the most commonly utilized tools to aid visually im-
paired (VI) individuals [15]. With advancements in computer vision and related
technologies, numerous navigation systems have been proposed [24, 3, 20, 15, 4,
1, 16, 17, 11, 39, 29, 25, 21]. However, many of these systems have limitations [15],
such as requiring costly, bulky, and/or custom equipment [25, 29, 26, 39, 11, 27]
or being too computationally intensive to run on portable devices and requiring
a network connection to a more powerful remote server [23, 16].

A systematic literature review conducted by Budrionis et al. [3] found that
smartphone-based computer vision tools for the VI often employ outdated im-
age and video processing techniques. Another systematic review, conducted by
Mandia et al. [24], discovered that researchers have started to adopt deep learn-
ing approaches [22, 6, 32] and that these techniques have grown with the advent
of increased computational power in machines. However, carrying high-powered
computational devices for vision-based assistive solutions is not practical for
users. Hence, a deep learning system that can make inferences using only an
edge device such as a smartphone is desirable. Ideally, this system should not
require network connectivity or additional accessories.

In a prior study, Breve et al. [2] proposed a framework that leverages Convo-
lutional Neural Networks (CNNs), transfer learning, and semi-supervised learn-
ing (SSL). The focus of the framework was to minimize computational costs
and make it feasible for implementation on smartphones without requiring ad-
ditional hardware. The framework uses a smartphone camera to capture images
of the user's path and immediately classi�es them, providing real-time feedback
to the user. A dataset was created to train the classi�ers, encompassing various
indoor and outdoor environments with di�erent lighting, �ooring, and obstacles.
The e�ectiveness of various CNN architectures was evaluated by �ne-tuning pre-
trained weights from the ImageNet dataset [28]. A prototype of the framework
running on a smartphone was recently presented [31].

In this study, previous works are signi�cantly expanded upon with the fol-
lowing key contributions:

1. Eight additional CNN models were added to the study, based on the cutting-
edge E�cientNet architecture [37], bringing the total number of networks
evaluated to 25.

2. The K-Fold Cross Validation process was repeated �ve times, providing more
robust results.

3. Image pre-processing functions were introduced to enhance image prepara-
tion for each network type, resulting in improved accuracy in most cases.

4. Ensembles of CNNs were employed to boost the overall accuracy by lever-
aging the strengths of multiple CNN architectures.

The rest of the paper is structured as follows: Section 2 shows some related
work on visually impaired aid (VIA). Section 3 presents the VIA dataset. Sec-
tion 4 displays the CNN architectures employed in this paper. Section 5 presents
experimental results and analysis comparing the performance of these models on
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the VIA dataset. Section 6 shows simulations with CNN ensembles, which en-
hance the accuracy of individual models. Finally, the conclusions are summarized
in Section 7.

2 Related Work

Several endeavors have been undertaken to integrate computer vision into aiding
visually challenged individuals. Mandia et al. [24] conducted a review of current
vision-based assistive solutions for VI individuals. The review primarily focuses
on camera-based systems and summarizes the sensors, image processing algo-
rithms, and communication protocols used. The use of acoustic output devices,
RFID, and GPS in addition to cameras is also discussed. The evolution from
traditional image processing techniques to deep learning for assistance for the
VI is highlighted. The paper concludes that the literature does not fully optimize
deep learning models for edge devices.

Budrionis et al. [3] provides an overview of recent research prototypes of
electronic travel aids (ETA) that use smartphones to assist VI people in orien-
tation, navigation, and way�nding. The authors systematically review scienti�c
achievements in the �eld and compare various smartphone-based ETA proto-
types. The meta-analysis found a few attempts to use state-of-the-art computer
vision methods based on deep neural networks. The study contrasts these �nd-
ings with a survey of blind expert users to reveal a major mismatch between
user needs and academic development in the �eld. The authors conclude that
the development of a�ordable smartphone-based ETAs is crucial for VI people
in low-income countries and highlight the need for further research to address
the identi�ed gaps.

Islam et al. [15] reviews the development of walking assistants for VI in-
dividuals and highlights the recent advancements, including their bene�ts and
limitations. The authors aim to provide a comprehensive overview of the current
state of walking assistants and suggest areas for future development in sensors,
computer vision, and smartphone-based technology.

Kuriakose et al. [20] propose an E�cientNet-Lite based scene recognition
model for use in a smartphone application that supports navigation for the blind
and VI. The model is trained and tested using a custom dataset of indoor and
outdoor scenes. A proof of concept prototype app was developed on the Android
platform.

Bai et al. [1] present a wearable assistive device for VI people to help them
navigate and recognize objects in indoor and outdoor environments. The device
consists of a RGB-D camera, an inertial measurement unit, a smartphone, and an
audio module. It uses a CNN-based object recognition system for perception and
navigation. The system provides semantic information about the surroundings
and interacts with the user through audio.

Jiang et al. [16] proposed a wearable system that uses stereo vision. The
system leverages binocular vision sensors to capture images and selects the best
images based on stereo image quality assessment. The selected images are then
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sent to the cloud for processing using a CNN and it returns information to the
user to assist with decision-making.

Paul et al. [17] proposes a system consisting of a camera, GPS, infrared and
light sensors connected to a microprocessor (Raspberry Pi) to process and relay
information about the user's surroundings. The camera captures images, while
the microprocessor uses image processing techniques to analyze the images and
identify objects and obstacles. The control unit then relays this information to
the user through audio output. The authors did not specify which processing
techniques they used, stating only that they have used the OpenCV library.

Hoang et al. [11] developed a system that employs a Kinect camera mounted
on a belt to capture and analyze the surroundings. The system detects obstacles
and conveys this information to the user via audio feedback. A laptop computer
must be carried in a backpack to process the captured information using the
Point Cloud Library.

In 2013, Tapu et al. [38] introduced a real-time obstacle detection and clas-
si�cation system that utilized video from a smartphone camera. They created
a framework consisting of tracking, motion estimation, and clustering methods.
Four years later, Tapu et al. [39] introduced a more advanced framework based
on CNNs for detecting, tracking, and recognizing objects in outdoor settings.
However, this system requires the use of a laptop computer, carried in a back-
pack, as the processing unit.

Lin et al. [23] proposed a guiding system that utilizes a smartphone. The
system incorporates CNNs for object recognition but relies on a desktop server
with a GPU and Compute Uni�ed Device Architecture (CUDA) to handle the
computational intensive object recognition task. Although the system has an
o�ine mode, it only o�ers recognition for faces and stairs.

Kumar and Meher [19] introduced an object recognition system that employs
a mixture of CNN (Convolutional Neural Network) and RNN (Recurrent Neural
Network). It can identify everyday indoor objects and their hues and generates
auditory responses to the user. Sa�oury et al. [29] put forward a system that uses
a smartphone and laser pointer. The system makes use of laser triangulation to
establish a collision avoidance protocol, and also delivers auditory feedback to
the user.

Poggi and Mattoccia [25] developed a wearable device that consists of glasses
with a custom RGBD sensor and FPGA onboard processing, a glove with micro-
motors for tactile feedback, a pocket battery, a bone-conductive headset, and a
smartphone. The system employs deep learning techniques to categorize detected
obstacles semantically. Previously, Poggi et al. [26] introduced a similar system
for recognizing crosswalks.

Rizzo et al. [27] propose a fusion framework for combining signals from a
stereo camera and infrared sensor for obstacle detection using a multi-scale CNN,
with plans to implement the framework into a wearable vest.

Islam and Sadi [14] applied a CNN to detect path holes and obtained impres-
sive results. However, it should be noted that they utilized a separate dataset
for �path hole� images and another for �non-path hole� images, with the latter
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consisting of road images taken with a wider angle. This raises the possibility
that the network may have learned di�erences in style that are not relevant to
the task at hand, thereby simplifying its job.

3 Dataset

The VIA dataset1 includes 342 images separated into two categories: 175 �clear-
path� and 167 �non-clear path�. The images were taken with a smartphone cam-
era and resized to 750 × 1000 pixels. The smartphone was positioned at chest
height and inclined at an angle of 30º to 60º to capture several meters of the
path ahead, including areas beyond the reach of a standard white cane.

Despite its small size, the dataset covers various indoor and outdoor envi-
ronments with di�erent �oor types, including dry and wet, light conditions with
both natural and arti�cial lighting, and obstacles like stairs, trees, holes, animals,
and tra�c cones. See Fig. 1 for examples of images in the proposed dataset.

4 CNN Architectures

This section showcases the CNN architectures explored in this study. It also
outlines the layers added to complete the models and classify the VIA dataset
images.

Table 1 displays the 25 evaluated architectures, along with some of their
characteristics and references from literature.

The original CNN architectures were used with their existing structures and
weights for ImageNet classi�cation [28], except for the dense classi�cation layers
which were removed. Instead, an average global pooling layer was added, followed
by a dense layer with 128 neurons and ReLU (Recti�ed Linear Unit) activation,
then followed by a softmax classi�cation layer. Figure 2 illustrates this proposed
architecture, where x represents the CNN's horizontal and vertical input size
(image size), and w, y, and z represent the size of the CNN's output in the
last convolutional layer, which depends on the original CNN architecture and is
speci�ed in Table 1. The table also displays the number of trainable parameters
in each CNN structure, including both the original layers and the added dense
layers for VIA dataset classi�cation."

5 CNN Comparison

This section presents the results of computer simulations that compared various
CNN models applied to the VIA dataset. The simulations were carried out using
Python and TensorFlow on three desktop computers equipped with NVIDIA
GeForce GPU boards: GTX 970, GTX 1080, and RTX 2060 SUPER, respec-
tively.

1 Available at: https://github.com/fbreve/via-dataset
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(a) �clear path�

(b) �non-clear path�

Fig. 1: Examples of images from the VIA dataset: (a) �clear path� category; and
(b) �non-clear path� category.
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Model
Input Image

Resolution

Output of Last

Conv. Layer

Trainable

Parameters
Reference

DenseNet121 224× 224 7× 7× 1024 7, 085, 314 [13]
DenseNet169 224× 224 7× 7× 1664 12, 697, 858 [13]
DenseNet201 224× 224 7× 7× 1920 18, 339, 074 [13]

E�cientNetB0 224× 224 7× 7× 1280 4, 171, 774 [37]
E�cientNetB1 240× 240 8× 8× 1280 6, 677, 410 [37]
E�cientNetB2 260× 260 9× 9× 1408 7, 881, 604 [37]
E�cientNetB3 300× 300 10× 10× 1536 10, 893, 226 [37]
E�cientNetB4 380× 380 12× 12× 1792 17, 778, 378 [37]
E�cientNetB5 456× 456 15× 15× 2048 28, 603, 314 [37]
E�cientNetB6 528× 528 17× 17× 2304 41, 031, 002 [37]
E�cientNetB7 600× 600 19× 19× 2560 64, 115, 026 [37]

InceptionResNetV2 299× 299 8× 8× 1536 54, 473, 186 [35]
InceptionV3 299× 299 8× 8× 2048 22, 030, 882 [36]
MobileNet 224× 224 7× 7× 1024 3, 338, 434 [12]

MobileNetV2 224× 224 7× 7× 1280 2, 388, 098 [30]
NASNetMobile 224× 224 7× 7× 1056 4, 368, 532 [41]

ResNet101 224× 224 7× 7× 2048 42, 815, 362 [8]
ResNet101V2 224× 224 7× 7× 2048 42, 791, 426 [9]

ResNet152 224× 224 7× 7× 2048 58, 482, 050 [8]
ResNet152V2 224× 224 7× 7× 2048 58, 450, 434 [9]

ResNet50 224× 224 7× 7× 2048 23, 797, 122 [8]
ResNet50V2 224× 224 7× 7× 2048 23, 781, 890 [9]

VGG16 224× 224 7× 7× 512 14, 780, 610 [33]
VGG19 224× 224 7× 7× 512 20, 090, 306 [33]

Xception 299× 299 10× 10× 2048 21, 069, 482 [5]

Table 1: CNN architectures, selected characteristics, and references.
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CNN
Input: (x, x, 3)

Output: (w, y, z)
CNN

Input: (x, x, 3)

Output: (w, y, z)

Average Global 
Pooling 2D

Input: (w, y, z)

Output: (z)

Average Global 
Pooling 2D

Input: (w, y, z)

Output: (z)

Dense
Input: (z)

Output: (128)
Dense

Input: (z)

Output: (128)

Dense
softmax

Input: (128)

Output: (2)

Dense
softmax

Input: (128)

Output: (2)

Fig. 2: Diagram of the proposed CNN networks.

The images were prepared for each CNN architecture by resizing them to
the CNN input size and normalizing their range, with no other pre-processing
applied. The networks were initialized with pre-trained weights from the Ima-
genet dataset [28], which has millions of images and hundreds of classes, and
is a commonly used source for transfer learning. These pre-trained weights are
available in Tensor�ow. For the dense layers, the He uniform variance scaling
initializer [7] was used.

The training phase involved six di�erent scenarios with varying optimizers,
learning rates, and frozen layers. The optimizers evaluated were RMSprop [10]
and Adam [18]. In two of the scenarios, only the dense layer weights were train-
able, while the convolutional layer weights remained frozen. In the other four
scenarios, all layers were trainable, with two scenarios using the same adap-
tive learning rates for all layers and the other two using di�erent �xed learning
rates for the convolutional and dense layers. These scenarios are summarized in
Table 2.

Con�gurations A and B were designed to preserve the weights trained on
the large Imagenet dataset, while avoiding damaging them with the changes
made using the smaller VIA dataset. In these scenarios, the CNNs acted as
feature extractors for the dense layers, with an adaptive learning rate that varied
from 10−3 to 10−5. Con�gurations C and D explored the bene�t of �ne-tuning
the weights in the convolutional layers for the target dataset, with an adaptive
learning rate that varied from 10−3 to 10−5 applied to all layers. The learning rate
was adjusted by a factor of 0.5 whenever the validation accuracy did not increase
in the last two epochs. Con�gurations E and F explored the idea that the dense
layers needed to be trained from scratch, while the convolutional layers received
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Table 2: The various scenarios in which each CNN was tested.

Con�g. Fine-Tuning Di�erent Learning Rates Optimizer

A No No RMSprop
B No No Adam
C Yes No RMSprop
D Yes No Adam
E Yes Yes RMSprop
F Yes Yes Adam

minor adjustments based on the weights learned from the Imagenet dataset. In
these scenarios, the learning rate was �xed at 10−5 for the convolutional layers
and 10−3 for the dense layers.

All models were trained for up to 50 epochs, with an early stopping crite-
rion set to interrupt the training phase if the loss on the validation set did not
decrease during the last 10 epochs. In most scenarios, the batch size was set to
16. However, for the scenarios involving E�cientNetB3 to E�cientNetB7, the
batch size was reduced to accommodate the memory constraints of the available
GPUs with up to 8GB of RAM. The speci�c batch sizes for these exceptions can
be found in Table 3.

Table 3: Batch sizes used for each method and con�guration, based on the GPU
memory constraints. For methods not listed in the table, the batch size was
uniformly set to 16 for all con�gurations.

Method Conf. A Conf. B Conf. C Conf. D Conf. E Conf. F

E�cientNetB3 16 16 16 16 16 - 8 16
E�cientNetB4 16 16 4 8 4 8
E�cientNetB5 16 16 2 4 2 4
E�cientNetB6 16 16 2 2 2 2
E�cientNetB7 16 16 1 1 1 1

Table 4 shows the classi�cation accuracy obtained through transfer learning
with the 25 di�erent CNN architectures. The results were obtained using K-Fold
Cross Validation with k = 10 and repeated 5 times, so each value in the table
represents the average of 50 executions. In all scenarios, 20% of the training
instances were randomly selected as the validation subset to guide the learning
rate adjustments and to determine the stopping criterion.

MobileNet was found to be the best architecture in three out of the six
con�gurations and had the best average performance considering all con�gura-
tions. Its success is noteworthy as MobileNet was speci�cally designed to operate
on mobile devices with limited processing power, which are the target devices
for this framework. E�cientNetB0, E�cientNetB4, and InceptionV3 were the
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Table 4: Comparison of 25 di�erent CNN-based models applied to the VIA
datasets with the six proposed con�gurations. The best results in each column
are highlighted in bold and the best results in each row are highlighted in italics.

Method Conf. A Conf. B Conf. C Conf. D Conf. E Conf. F Average

MobileNet 0.9158 0.9152 0.9299 0.9257 0.8729 0.9105 0.9117

Xception 0.8749 0.8755 0.9374 0.9252 0.8934 0.9029 0.9016
E�cientNetB0 0.8877 0.8876 0.9427 0.9274 0.8724 0.8819 0.9000
E�cientNetB3 0.8901 0.8889 0.9404 0.9291 0.8727 0.8761 0.8995
E�cientNetB2 0.8725 0.8660 0.9391 0.9426 0.8672 0.8679 0.8926
E�cientNetB4 0.8813 0.8807 0.9304 0.9456 0.8414 0.8632 0.8904
E�cientNetB1 0.8908 0.8855 0.9369 0.9341 0.8482 0.8463 0.8903
DenseNet201 0.8841 0.8847 0.8847 0.8807 0.8696 0.8809 0.8808

InceptionResNetV2 0.8650 0.8644 0.8954 0.9217 0.8632 0.8668 0.8794
InceptionV3 0.8691 0.8657 0.8611 0.8965 0.8936 0.8807 0.8778
DenseNet169 0.8789 0.8766 0.8779 0.8854 0.8679 0.8713 0.8763
DenseNet121 0.8730 0.8671 0.8867 0.8912 0.8715 0.8680 0.8763

ResNet50 0.8947 0.8901 0.8139 0.8392 0.8801 0.8761 0.8657
ResNet101 0.8925 0.8919 0.8130 0.7919 0.8731 0.8626 0.8542

E�cientNetB5 0.8953 0.8947 0.8760 0.9233 0.6398 0.8327 0.8436
MobileNetV2 0.8924 0.8912 0.8324 0.7954 0.8116 0.8042 0.8378

ResNet152 0.8755 0.8754 0.7418 0.7724 0.8819 0.8638 0.8351
ResNet50V2 0.8539 0.8581 0.7273 0.8263 0.8516 0.8587 0.8293

E�cientNetB6 0.8719 0.8690 0.8514 0.8738 0.7383 0.7516 0.8260
ResNet101V2 0.8807 0.8790 0.6184 0.7256 0.8778 0.8779 0.8099
ResNet152V2 0.9106 0.9077 0.5942 0.6663 0.8890 0.8885 0.8094

VGG19 0.8263 0.8118 0.7916 0.6707 0.8746 0.8680 0.8072
VGG16 0.8263 0.8175 0.7877 0.6316 0.8759 0.8543 0.7989

NASNetMobile 0.8560 0.8578 0.6671 0.6997 0.7092 0.7050 0.7491
E�cientNetB7 0.8731 0.8714 0.5248 0.4999 0.5242 0.5230 0.6361

Average 0.8773 0.8749 0.8241 0.8289 0.8344 0.8433 0.8472
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best-performing architectures in the remaining con�gurations. The highest ac-
curacy overall was achieved by E�cientNetB4 with con�guration D (0.9456),
closely followed by E�cientNetB0 with con�guration C (0.9427). This suggests
that �ne-tuning the convolutional layers can improve accuracy for some net-
works. However, in general, most architectures saw a decrease in accuracy when
�ne-tuned, as indicated by the best performing con�gurations being A and B in
average. Con�gurations E and F did not yield exceptional results, with their best
results being worse than those achieved with other con�gurations. Nonetheless,
their average performance was better than that achieved with con�gurations C
and D. Regarding optimizers, Adam and RMSprop produced similar results, with
Adam showing a slight advantage by achieving an average accuracy of 0.8490
(con�gurations B, D, and F) compared to 0.8453 of RMSprop (con�gurations A,
C, and E).

6 CNN Ensembles

This section presents the computer simulations involving ensembles of multiple
instances of CNN models, including ensembles of single and multiple instances of
di�erent architectures. In all ensemble experiments, the output of the last dense
layer, just before the softmax activation function, was used. This resulted in two
continuous values for each image, which represent the probability of each class.
The ensemble output was then computed by taking the average of its members'
output. The same folds used in the previous section were employed, and the
results in this section represent the average of 50 executions, obtained through
K-Fold Cross Validation with k = 10 repeated 5 times. Ensemble outputs were
computed for each fold individually and then averaged.

The �rst ensemble experiment involved creating ensembles using only in-
stances of the same CNN model. For each con�guration, the architecture that
provided the best individual results in Table 4 was selected. Speci�cally, Mo-
bileNet was used for con�gurations A, B, and F, E�cientNetB0 for con�gura-
tion C, E�cientNetB4 for con�guration D, and InceptionV3 for con�guration E.
One to ten instances were created and initialized with di�erent seeds, and the
accuracy achieved with each ensemble was recorded in Table 5. Across all tested
scenarios, ensembles achieved higher accuracies than a single instance, with the
best results typically obtained using six instances. While all con�gurations bene-
�ted from the use of ensembles, con�guration D achieved the best results overall.
Speci�cally, the highest accuracy achieved was 0.9602, obtained using six and
ten instances of E�cientNetB4 with con�guration D.

The second ensemble experiment was similar to the �rst, but ensembles were
formed using one to ten instances of the best architecture in each con�guration.
Con�gurations were added to the ensembles one by one according to their perfor-
mance in Table 4, with con�gurations D, C, A, B, F, and E added in that speci�c
order. The accuracy achieved with each ensemble is presented in Table 6, with
the best overall accuracy of 0.9655 obtained using six instances from each of the
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three best con�gurations: E�cientNetB4 with con�guration D, E�cientNetB0
with con�guration C, and MobileNet with con�guration A.

Table 5: Comparison of ensembles of single CNN-based models applied to the
VIA datasets with the six proposed con�gurations. The best results in each
column are highlighted in bold and the best results in each row are highlighted
in italics.

Instances Conf. A Conf. B Conf. C Conf. D Conf. E Conf. F Average

1 0.9158 0.9152 0.9427 0.9456 0.8936 0.9105 0.9206
2 0.9187 0.9135 0.9451 0.9502 0.9065 0.9170 0.9252
3 0.9170 0.9176 0.9445 0.9532 0.9112 0.9193 0.9271
4 0.9164 0.9158 0.9485 0.9562 0.9176 0.9182 0.9288
5 0.9187 0.9182 0.9491 0.9585 0.9171 0.9217 0.9306
6 0.9176 0.9199 0.9549 0.9602 0.9182 0.9199 0.9318

7 0.9211 0.9182 0.9543 0.9579 0.9211 0.9164 0.9315
8 0.9164 0.9158 0.9509 0.9596 0.9194 0.9158 0.9297
9 0.9182 0.9176 0.9538 0.9596 0.9200 0.9193 0.9314
10 0.9188 0.9159 0.9526 0.9602 0.9194 0.9176 0.9308

Average 0.9179 0.9168 0.9496 0.9561 0.9144 0.9176 0.9287

7 Conclusions

This paper explores the application of 25 di�erent CNN architectures to identify
obstacles in the path of visually impaired individuals. K-Fold Cross Validation
was utilized with k = 10 and �ve repetitions to provide robust results. The
architectures have low computational costs during inference, executing in mil-
liseconds on current smartphones, allowing them to be implemented without
relying on external equipment or remote servers. The CNN architectures were
pre-trained on large datasets and evaluated �rst as feature extractors with pre-
trained weights, then with �ne-tuned weights for the proposed task. Fine-tuning
an E�cientNetB4 network achieved the highest accuracy of 0.9456.

CNN ensembles were examined, comprising multiple instances of the single
best architecture in each con�guration, as well as instances of the best archi-
tectures in each con�guration. In the �rst scenario, an ensemble of six instances
was utilized, resulting in an accuracy improvement to 0.9602 for the �ne-tuned
E�cientNetB4. In the second scenario, the six instances of E�cientNetB4 were
combined with six instances of E�cientNetB0, which were also �ne-tuned to the
proposed task, and six instances of MobileNet, which were used as a feature
extractor. This approach resulted in a further accuracy increase to 0.9655.

The numerous computer simulations conducted in this study yielded promis-
ing results for some CNN architectures and investigated the use of di�erent
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Table 6: Comparison of ensembles of multiple CNN-based models applied to
the VIA datasets using the one to six of the proposed con�gurations. The best
results in each column are highlighted in bold and the best results in each row
are highlighted in italics.

Instances of

each conf.

Conf.

D

Conf.

DC

Conf.

DCA

Conf.

DCAB

Conf.

DCABF

All

Conf.
Average

1 0.9456 0.9532 0.9567 0.9550 0.9503 0.9491 0.9517
2 0.9502 0.9491 0.9544 0.9538 0.9486 0.9521 0.9514
3 0.9532 0.9544 0.9597 0.9545 0.9509 0.9539 0.9544
4 0.9562 0.9555 0.9614 0.9527 0.9515 0.9556 0.9555
5 0.9585 0.9567 0.9620 0.9544 0.9544 0.9573 0.9572
6 0.9602 0.9579 0.9655 0.9562 0.9538 0.9556 0.9582

7 0.9579 0.9544 0.9643 0.9574 0.9544 0.9550 0.9572
8 0.9596 0.9532 0.9626 0.9562 0.9526 0.9573 0.9569
9 0.9596 0.9555 0.9637 0.9568 0.9568 0.9550 0.9579
10 0.9602 0.9561 0.9626 0.9556 0.9579 0.9550 0.9579

Average 0.9561 0.9546 0.9613 0.9553 0.9531 0.9546 0.9558

optimizers (Adam and RMSprop), learning strategies (single learning rate ver-
sus di�erent rates for convolution and dense layers), and pre-trained weights
(�xed versus �ne-tuned). The study also demonstrated that ensembles could
enhance accuracy by utilizing multiple instances of the same architecture and
con�guration or multiple instances of di�erent architectures and con�gurations.

Future work includes expanding the proposed dataset by acquiring more im-
ages and exploring other approaches and modi�cations to the current framework
to further enhance classi�cation accuracy. Recently, a smartphone prototype ap-
plication was developed to test real-world scenarios [31]. Furthermore, the �nd-
ings presented in this paper can guide future research on related datasets as
numerous CNN architectures were tested and compared.
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