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From Pixels to Titles: Video Game Identification by
Screenshots using Convolutional Neural Networks

Fabricio Breve

Abstract—This paper investigates video game identification
through single screenshots, utilizing ten convolutional neural
network (CNN) architectures (VGG16, ResNet50, ResNet152,
MobileNet, DenseNet169, DenseNet201, EfficientNetB0, Efficient-
NetB2, EfficientNetB3, and EfficientNetV2S) and three trans-
formers architectures (ViT-B16, ViT-L32, and SwinT) across 22
home console systems, spanning from Atari 2600 to PlayStation 5,
totalling 8,796 games and 170,881 screenshots. Except for VGG16,
all CNNs outperformed the transformers in this task. Using
ImageNet pre-trained weights as initial weights, EfficientNetV2S
achieves the highest average accuracy (77.44%) and the highest
accuracy in 16 of the 22 systems. DenseNet201 is the best in
four systems and EfficientNetB3 is the best in the remaining
two systems. Employing alternative initial weights fine-tuned in
an arcade screenshots dataset boosts accuracy for EfficientNet
architectures, with the EfficientNetV2S reaching a peak accuracy
of 77.63% and demonstrating reduced convergence epochs from
26.9 to 24.5 on average. Overall, the combination of optimal
architecture and weights attains 78.79% accuracy, primarily led
by EfficientNetV2S in 15 systems. These findings underscore the
efficacy of CNNs in video game identification through screenshots.

Index Terms—video game identification, convolutional neural
networks, automated game recognition.

I. INTRODUCTION

HUMANS possess the remarkable ability to easily recog-
nize their favorite video games or titles they have played

frequently from a single screenshot. This proficiency is rooted
in the presence of consistent visual elements, including sprites,
heads-up displays (HUDs), and distinctive game scenarios.
However, extending this capability to the automated identi-
fication of random video games from an extensive console
library presents a challenge, even for the most dedicated
gamers. Therefore, the concept of automatically identifying
video games from single screenshots holds significant interest,
not only for its technical complexity but also for its vast
practical applications.

Automated game identification could offer significant ben-
efits to various sectors within the gaming industry. Video
game databases, search engines, and online platforms could
gain considerably from this technology. By analyzing user-
uploaded screenshots, these platforms can automatically gen-
erate metadata, including game titles, release dates, and de-
veloper information. Such automation would not only im-
prove the accuracy of their game libraries but also enhance
cataloging efficiency. Moreover, online streaming platforms
could leverage screenshot recognition to provide real-time
information to viewers about the games being played during
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live streams, enhancing the overall viewer experience. This
technology opens doors to further innovation within the gam-
ing ecosystem, potentially influencing game recommendation
systems and aiding game-related research.

Most prior research on video game classification has cen-
tered around identifying their genre [1]–[4]. However, this
paper takes a more specific approach, focusing on classifying
video game titles based on single screenshots using CNN
and transformer models. The hypothesis is that their inherent
capacity of automatically extracting relevant features from
images is sufficient to identify video game titles from single
screenshots in most scenarios, without relying on other fea-
tures. To begin this research, a dataset encompassing 170,881
screenshots from 8,796 games of 22 popular home console
systems was curated. The screenshots were sourced from the
Moby Games Database [5]. The proposed dataset spans a
wide spectrum of gaming history, ranging from iconic consoles
like the ‘Atari 2600’ of the second generation to the cutting-
edge ‘PlayStation 5’ and ‘Xbox Series X/S’ of the current
generation, carefully selecting the most sold consoles from
each generation between them.

To tackle this task, well-established CNN architectures were
selected: VGG [6], ResNet [7], MobileNet [8], DenseNet [9],
and EfficientNet [10], [11]. These architectures have con-
sistently demonstrated outstanding performance in previous
works with different kinds of images [12], [13], making
them prime candidates for this game title classification task.
Transformers are also being successfully employed in image
classification; therefore, two of them were selected for this
task: Vision Transformer [14] and Swin Transformer [15]. The
initial weights of all those models were first initialized with
pre-trained weights from the ImageNet dataset [16], a widely
adopted approach in transfer learning [17]. Subsequently, the
fine-tuned weights from another dataset of screenshots were
employed to enhance both classification accuracy and reduce
training times of the best methods for this task. To the
best of our knowledge, this marks the first attempt to tackle
the challenge of game title classification using CNNs and
transformers. It is worth noting that after training a network to
identify game titles, incorporating new titles and screenshots
into the dataset — whether they are added to the Moby Games
Database or provided by the publisher — would necessitate
adding additional nodes to the output layer and performing at
least a few more training epochs to adjust the new network
weights and fine-tune the convolutional layers. By pushing the
boundaries of automated video game identification, the aim is
to contribute valuable insights to game-related research and
practical applications in the ever-evolving gaming industry.

The remainder of this paper is organized as follows. Sec-
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tion II presents related work on video game classification.
Section III presents the Moby Games Database and how the
dataset was sourced from it. Section IV shows the CNN and
transformer architectures employed in this paper. Section V
displays the experiments comparing the CNN and transformer
architectures in the task of identifying the games from their
screenshots, initialized with pre-trained weights from the Im-
ageNet dataset. Section VI demonstrates experiments using
weights fine-tuned in another screenshots dataset, comparing
the accuracy and training epochs with those obtained with the
ImageNet weights and random weights. Section VII presents
some limitations of our proposed approach. Finally, the con-
clusions are drawn in Section VIII.

II. RELATED WORK

Most of the video games classification attempts so far aimed
at genre classification. Souza et al. [1] pioneering work classi-
fied game genre of gameplay videos. Their dataset comprises
700 gameplay videos spanning seven distinct game genres.
In their research, they introduced novel descriptors known
as Bossa Nova and BinBoost. The experimental outcomes
demonstrated the effectiveness of their proposed approach,
achieving an accuracy rate of 89.84%.

Göring et al. [2] also introduced a novel method for clas-
sifying video games genres based on content. They used a
dataset comprising 351 gameplay videos spanning six different
genres. They employed random forest and gradient boosting
trees as underlying machine-learning techniques, combined
with feature selection of image-based features and motion-
based features. The most promising results were achieved
using the random forest classifier, which yielded an accuracy
rate of 60.6%.

Zadtootaghaj et al. [18] introduced a game classification
method based on graphical and video complexity. Their ap-
proach categorizes games into three distinct classes: low-
complexity, medium-complexity, and high-complexity games.
To achieve this classification, they developed a decision tree
capable of accurately assigning a game to its appropriate com-
plexity class with an accuracy rate of 96%. The classification
process relies on the analysis of specific attributes within the
gameplay video, including the observation of a static area,
assessment of the degree of freedom (DoF), and quantification
of camera movement.

While the majority of classification endeavors have typically
focused on broader categories, there was a unique attempt to
classify video games by their titles more than a decade ago.
In this pioneering effort, Madani et al. [19] explored several
fusion methods using a dataset containing 120,000 gameplay
videos, with the objective of identifying game titles. Their ap-
proach integrated both audio and visual features to accurately
pinpoint these specific game titles, ultimately achieving a F1-
score of 0.82. Although their dataset is considerably large,
they explored only a small number of games, identifying 30
distinct game titles. To the best of our knowledge, there has
not been any other attempt to identify video games by their
titles, especially in larger datasets with hundreds or thousands
of titles, neither using video nor screenshots.

CNNs have significantly influenced the landscape of au-
tomatic image classification, including game classification.
Suatap and Patanukhom [3] used games screenshots and icons
provided in game stores to classify them by genre using
convolutional neural networks and ensemble techniques. They
achieved 40.3% and 46.7% classification accuracies for single
icon and screenshot classification tasks, respectively. They
increased these results to 40.5% and 47.6%, respectively, in
a later work [20], in which they also used features extracted
from their trained models to perform other two tasks: similar
game searching and quality assessment of game images based
on the correctness of viewers’ understanding of game content.

Recently, Jiang and Zheng [4] devised deep neural networks
for the purpose of classifying game genres using either cover
images or description text. Their dataset encompassed cover
images and description texts sourced from a pool of 50,000
games, which they categorized into 15 distinct genres. In
their approach, several pre-trained CNNs were fine-tuned for
the cover image classification task. For the classification of
description text, they employed Long Short-Term Memory
(LSTM) networks and the Universal Sentence Encoder (USE).
The image-based model yielded a highest accuracy rate of
31.4% when utilizing ResNet-50. They also achieved signif-
icant improvement in accuracy, up to 49.9%, by combining
image and text features within a multi-modal model. Both of
these previous studies were limited to identifying game genres,
and their accuracy was only moderate (below 50%). Therefore,
identifying game titles, which are more specific than genres,
is still an open challenge.

Video streaming platforms such as YouTube and Twitch have
the capability to automatically identify games being played
during live streams. However, this functionality appears to
be currently limited to a few specific games. In most cases,
streamers or uploaders still need to manually label the games
they are playing. Unfortunately, these platforms do not openly
disclose the methods they use for game identification, whether
from existing literature or proprietary development.

III. THE DATASET

The Moby Games Database [5], as stated on their website,
is a project with the primary goal of cataloging comprehensive
information about electronic games, encompassing computer,
console, and arcade titles, on a game-by-game basis. This
extensive catalog includes release details, credits, cover art,
player-uploaded screenshots with captions, neutral descrip-
tions, and much more. The database boasts a collection of over
one million screenshots, organized by game titles and systems.
Additionally, they offer an API that simplifies the process
of requesting and retrieving dataset entries and screenshot
files. Given these advantages, the Moby Games Database was
selected as the source for the screenshots used in this research.

To maintain a focused scope for this initial endeavor in
video game identification using CNNs, the study exclusively
considered home video game consoles. Handheld devices,
arcade games, and computer-based titles will be addressed
in future research. The selection process involved choosing
the top 22 best-selling home video game consoles of all time
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TABLE I
HOME CONSOLE VIDEO GAME SYSTEMS, THEIR MANUFACTURERS, AND THE TOTAL/SELECTED NUMBER OF GAMES AND SCREENSHOTS FOR THE

STUDY. GAMES WITH A MINIMUM OF FIVE AVAILABLE SCREENSHOTS IN THE DATABASE WERE CHOSEN FOR ANALYSIS.

System Manufacturer Selected
Games

Total
Games

Selected
Screenshots

Total
Screenshots

Atari 2600 Atari 302 598 2148 2981
NES Nintendo 1236 1426 18277 18579

Master System Sega 322 357 4795 4850
PC Engine NEC/Hudson Soft 213 276 3024 3099

Mega Drive Sega 926 1016 15838 15943
Super Nintendo Nintendo 1113 1216 20926 21079

Sega Saturn Sega 249 809 4413 4536
PlayStation Sony 1197 2815 26831 27095

Nintendo 64 Nintendo 172 378 2958 3125
Dreamcast Sega 155 553 2147 2217

PlayStation 2 Sony 677 3430 14157 14590
GameCube Nintendo 149 621 3061 3094

Xbox Microsoft 161 1015 3351 3379
Xbox 360 Microsoft 651 9357 9087 9426

PlayStation 3 Sony 255 15146 8358 8493
Wii Nintendo 118 2680 2519 2655

Wii U Nintendo 31 1590 775 798
PlayStation 4 Sony 625 22733 22695 22912

Xbox One Microsoft 119 16545 2397 2661
Nintendo Switch Nintendo 77 12374 1736 1787
Xbox Series X/S Microsoft 5 3256 37 44

PlayStation 5 Sony 43 2432 1351 1356

Total 8796 100623 170881 174699

[21]. These consoles originate from six different manufacturers
and exhibit varying quantities of screenshots per game in the
database, ranging from none to a few dozen. In this paper, all
experiments employed k-fold cross-validation with k = 5. To
ensure that each game has at least one screenshot in each of
the five folds, only games with a minimum of five available
screenshots were selected. Additionally, during the training
phase, it was also assured that each game had screenshots in
both the training and validation subsets.

Table I provides an overview of the 22 chosen systems,
detailing their total game and screenshot counts, as well as the
specific number of games and screenshots selected to satisfy
the “at least 5 screenshots” criterion. It is important to note
that some of the newer systems, such as the Wii U, Nintendo
Switch, Xbox Series X/S, and PlayStation 5, have fewer
than a hundred games with available screenshots in Moby
Games. Since the last three are current-generation consoles, it
is expected that more screenshots will become available over
time. However, this current limitation can restrict our analysis.
Figure 1 shows some screenshots from the built dataset.

IV. CNN AND TRANSFORMER ARCHITECTURES

In this section, the CNN and transformer architectures
explored in this study are introduced, along with a description
of the additional layers integrated to achieve successful screen-
shot classification. Table II offers an overview of the thirteen
architectures under examination, highlighting their input image
resolution, the size of their output in the last layer before the
classification layer, the quantity of parameters involved, and
citations to their respective references in the literature.

Each of the thirteen network architectures is independently
applied to each of the 22 home console datasets, resulting

in a total of 286 variations. The output from the last layer
of the original CNN or Swin Transformer (SwinT), before the
classification layer, is a 3-D tensor, which is then directed into
a global average pooling layer. Subsequently, a dropout layer
with a rate of 20% is implemented to mitigate overfitting,
followed by a large softmax classification layer with up to
1,236 outputs, corresponding to the number of game titles
in the NES console dataset. This proposed architecture is
visualized in Figure 2, with x representing the dimensions
of the input size (image size), w, y, and z indicating the
dimensions of the CNN or SwinT output in its final layer
before classification (as detailed in Table II), and g denoting
the output layer’s dimensions, which depend on the number
of games from the system being evaluated that are present
in the dataset (as indicated in Table I). Note that the Visual
Transformer (ViT) models produce 1-D tokens, therefore the
pooling layer is not used in their case, and the outputs proceed
directly to the dropout layer.

V. COMPARISON

This section presents experiments that compare the CNN
and transformer models applied to the classification of screen-
shots from each of the 22 systems shown in Table I individu-
ally. All experiments utilized Python and TensorFlow running
on three distinct desktop computers equipped with four distinct
NVIDIA GeForce GPU boards: GTX 970, GTX 1080, RTX
2060 SUPER, and RTX 4060 Ti1.

For each CNN and transformer architecture, images were
resized to meet the input size requirements of the respective
models without maintaining the aspect ratio and were normal-
ized according to each model’s normalization function. No

1Access the source code at https://github.com/fbreve/videogame
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Enduro - Atari 2600 Super Mario Bros. - NES The Legend of Zelda - NES Alex Kidd in Miracle World -
Master System

Bonk’s Adventure - PC
Engine

Sonic the Hedgehog -
Genesis

Super Mario World - Super
Nintendo

Virtua Fighter 2 - Sega
Saturn

Gran Turismo - PlayStation Final Fantasy VII -
PlayStation

Super Mario 64 - Nintendo
64

Sonic Adventure -
Dreamcast

Grand Theft Auto: San
Andreas - PlayStation 2

Super Smash Bros.: Melee
- GameCube

Halo: Combat Evolved -
Xbox

Halo 3 - Xbox 360 The Last of Us -
PlayStation 3

Wii Sports - Wii Mario Kart 8 - Wii U The Witcher 3: Wild Hunt -
PlayStation 4

Horizon: Zero Dawn -
PlayStation 4

Gears of War 4 - Xbox One The Legend of Zelda:
Breath of the Wild -

Nintendo Switch

Forza Horizon 5 - Xbox
Series X/S

Ratchet & Clank: Rift Apart
- PlayStation 5

Fig. 1. Some examples of screenshots from the proposed dataset.

CNN
(or SwinT)

Input: (x, x, 3)

Output: (w, y, z)

CNN
(or SwinT)

Input: (x, x, 3)

Output: (w, y, z)

Average 
Global 

Pooling 2D

Input: (w, y, z)

Output: (z)

Average 
Global 

Pooling 2D

Input: (w, y, z)

Output: (z)

Dropout
rate=0.2

Input: (z)

Output: (z)

Dropout
rate=0.2

Input: (z)

Output: (z)

Dense
softmax

Input: (z)

Output: (g)

Dense
softmax

Input: (z)

Output: (g)

Fig. 2. The proposed CNN and SwinT Transfer Learning architecture. The ViT architecture is similar but lacks the pooling layer because its output is
one-dimensional.
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TABLE II
CNN AND TRANSFORMER ARCHITECTURES, SOME OF THEIR CHARACTERISTICS, AND THEIR REFERENCES.

Model Input Image
Resolution

Output of Last Layer
Before Classification Parameters Reference

VGG16 224× 224 7× 7× 512 138.4M [6]
ResNet50 224× 224 7× 7× 2048 25.6M [7]

ResNet152 224× 224 7× 7× 2048 60.4M [7]
MobileNet 224× 224 7× 7× 1024 4.3M [8]

DenseNet169 224× 224 7× 7× 1664 14.3M [9]
DenseNet201 224× 224 7× 7× 1920 20.2M [9]

EfficientNetB0 224× 224 7× 7× 1280 5.3M [10]
EfficientNetB2 260× 260 9× 9× 1408 9.2M [10]
EfficientNetB3 300× 300 10× 10× 1536 12.3M [10]

EfficientNetV2S 384× 384 12× 12× 1280 21.6M [11]
ViT-B16 224× 224 768 8.66M [14]
ViT-L32 384× 384 1024 306.5M [14]

SwinT 224× 224 7× 7× 768 28.3M [15]

additional preprocessing was performed. The networks were
initialized with pre-trained weights from the ImageNet dataset
[16], which contains millions of images across hundreds of
classes and is commonly used for transfer learning. These pre-
trained weights are available with the corresponding CNN or
transformer implementations. All experiments utilized Keras
implementations of CNNs and transformers2.

K-Fold Cross Validation, employing k = 5, was applied
universally across all datasets. Training utilized the Adam op-
timizer [22], initiating with a learning rate of 10−3 and halving
whenever the validation accuracy stagnated for 2 epochs, down
to a minimum of 10−5. In each training stage, from the four
folds composing the training subset, a random 20% of images
were allocated to the validation subset, ensuring consistent
class proportions through stratification. All models underwent
training for up to 50 epochs, with an early stopping criterion
to cease training if the validation set loss failed to decrease
during the last 10 epochs. Other hyperparameters were set to
their TensorFlow defaults. These hyperparameters were chosen
based on experiments conducted in prior studies using various
types of images [12], [13].

The results are detailed in Tables III and IV for CNNs
and transformers, respectively. Each result is the average from
five different instances of each model, following the Cross
Validation approach.

Regarding the CNNs, EfficientNetV2S achieved the best
accuracy in 16 of the 22 systems, as well as the best average
accuracy across all systems (77.44%). Regarding the systems,
the best accuracy is achieved with the Xbox Series X/S using
EfficientNetV2S (100%). However, it is worth noticing that
this system only had 37 screenshots from a total of five games.
The Atari 2600 is the system with the best average accuracy
(84.64%) among all tested models. This is likely related to the
simpler graphics of this second-generation console compared
to newer systems. Most games for the Atari 2600 do not
exhibit significant screen variation. On the other hand, newer
systems with complex graphics like PlayStation 4, PlayStation
5 and XBox One are among those with the lowest average
accuracy.

2CNNs: https://keras.io/api/applications/, ViT: https://pypi.org/project/
vit-keras/, Swin: https://pypi.org/project/tfswin/

In simpler tasks, smaller architectures often perform as well
as larger ones. It’s valuable to consider these smaller networks
when selecting the optimal architecture for a task because
if a smaller network can yield comparable results in less
computational time, there is no justification for employing a
larger one. This rationale led to the inclusion of MobileNet and
EfficientNetB0 in this comparison. However, in the context
of video game detection by screenshot, it became evident
that larger networks like DenseNet and the larger versions
of EfficientNet outperformed the smaller ones. Therefore, it
is not possible to use smaller networks without compromising
accuracy.

Earlier architectures such as VGG and ResNet performed
worse compared to newer models like DenseNet and Efficient-
Net. Notably, VGG struggled to learn the training subset in
many instances, as indicated by its significantly lower accuracy
and higher standard deviation relative to the other models.

Over recent years, transformer architectures have begun to
outperform CNN models in many image classification tasks
where CNNs once dominated. However, this is not the case
for the video game identification by screenshots task. The
three transformer architectures evaluated performed worse than
all the CNN models except for VGG16. ViT-B16 achieved
the highest average accuracy among the transformers, but
only at 51.19%. SwinT was the best among transformers in
nine of the 22 systems, though its overall average was lower
at 44.06%. In many instances, the transformers struggled to
learn the training subset, contributing to their higher standard
deviation. Even when they did learn, their accuracy remained
substandard compared to CNNs. It is known that transformers
require larger training sets than CNNs to outperform them in
most scenarios. This is likely the case for this task, where
the number of screenshots per game (individuals per class) is
relatively low.

VI. ALTERNATIVE INITIAL WEIGHTS

The ImageNet weights are commonly used in many transfer
learning scenarios with success. Through fine-tuning, these
weights can be adapted to perform many different tasks. How-
ever, it is expected that transferring weights from a similar task
might enhance accuracy and reduce training times compared
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to using the ImageNet weights. Hence, investigating whether
this holds true for the game identification by screenshots task
is worthwhile.

To conduct these experiments, we used the platform listed
on MobyGames as ‘Arcade’. They have included all the
arcade games in this single platform. Therefore, it contains
games contemporary to multiple home console generations,
with graphics of increasing complexity being released over
the years. The Arcade screenshots were obtained using the
same criteria applied in sourcing screenshots from home
console systems. Out of 3,125 games and 24,714 screenshots,
1,633 games and 24,235 screenshots were selected based on
the criterion of ‘at least five screenshots per game.’ It is
worth noticing that some arcade games were later ported to
home consoles, usually with simpler graphics due to hardware
limitations. Despite that, convolutional layers trained in similar
graphics could be more easily fine-tuned to detect the home
version counterparts.

The three architectures that demonstrated the best accuracies
in the previous section — DenseNet201, EfficientNetB3, and
EfficientNetV2S — were chosen for application in these new
experiments. Each of them was trained using the entire Arcade
dataset, utilizing identical parameters as outlined earlier. The
weights obtained from training on the Arcade dataset were
subsequently employed as initial weights for training these
architectures with screenshots from each of the 22 home
console systems. It is worth noting that the golden age of
arcades spanned from the late 1970s to the early 1980s, and the
number of new releases declined significantly afterward. In the
new millennium, there are even fewer arcade game releases.
Consequently, it is expected that earlier home consoles could
derive greater benefit from using the Arcade weights.

Tables V, VI, and VII display the accuracy achieved and the
epochs required to train each network, using random weights
initialization and both the ImageNet and Arcade weights. In
all scenarios, random weights resulted in lower accuracy and
required more epochs for convergence compared to the other
weight initialization methods. Conversely, Arcade weights
outperformed ImageNet weights in most scenarios, though
not all. For DenseNet201 (Table V), employing the Arcade
weights resulted in improved accuracy for only 10 out of the
22 systems. However, training times decreased for 20 of the
22 systems. Overall, while the average accuracy remained the
same (75.77%), the average number of epochs needed to train
the network decreased from 24.6 to 22.0.

For EfficientNetB3 (Table VI), employing the Arcade
weights led to improved accuracy for 19 of the 22 systems.
Moreover, training times decreased for 20 of the 22 systems.
Overall, the average accuracy increased from 74.51% to
76.36%, while the average number of epochs required to train
the network decreased from 23.7 to 20.5. This architecture
demonstrated the most significant improvement using the
Arcade weights.

Finally, with EfficientNetV2S (Table VII), using the Arcade
weights led to improved accuracy in only 9 out of the 22
systems. However the average accuracy still increased from
77.44% to 77.63%. Training times decreased for 17 of the 22
systems, and the average number of epochs required to train
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TABLE IV
ACCURACY ACHIEVED BY THE THREE DIFFERENT TRANSFORMER MODELS IN EACH OF THE 22 SCREENSHOTS DATASETS. EACH MODEL IS EXECUTED

FIVE TIMES FOLLOWING THE CROSS VALIDATION APPROACH. THE HIGHEST ACCURACY FOR EACH DATASET IS HIGHLIGHTED IN BOLD. STANDARD
DEVIATIONS ARE SHOWN IN PARENTHESES.

System ViT-B16 ViT-L32 SwinT Average

Atari 2600 72,49% (2,49%) 74,30% (2,88%) 2,19% (0,56%) 30,87% (16,48%)
NES 51,06% (7,03%) 58,17% (1,94%) 54,53% (1,38%) 51,06% (24,61%)

Master System 55,91% (5,25%) 58,06% (9,13%) 40,58% (25,99%) 55,91% (27,80%)
PC Engine 69,74% (1,21%) 57,05% (11,06%) 73,21% (3,26%) 69,74% (29,16%)

Mega Drive 52,43% (8,28%) 55,84% (10,09%) 35,07% (28,40%) 52,43% (27,54%)
Super Nintendo 53,12% (8,57%) 53,58% (11,08%) 33,66% (32,60%) 53,12% (27,90%)

Sega Saturn 52,07% (5,51%) 52,96% (2,73%) 50,63% (7,15%) 52,07% (23,80%)
PlayStation 42,89% (8,96%) 48,74% (8,98%) 54,70% (3,23%) 42,89% (24,92%)

Nintendo 64 57,03% (3,24%) 49,03% (18,10%) 57,97% (25,75%) 57,03% (30,82%)
Dreamcast 51,61% (2,58%) 50,02% (2,62%) 57,40% (8,27%) 51,61% (24,18%)

PlayStation 2 51,08% (3,23%) 47,83% (8,04%) 44,60% (22,13%) 51,08% (25,17%)
GameCube 57,76% (5,47%) 46,40% (20,30%) 22,41% (24,37%) 57,76% (23,79%)

Xbox 52,77% (9,66%) 52,28% (4,49%) 55,06% (26,55%) 52,77% (29,61%)
Xbox 360 42,65% (18,69%) 46,77% (18,25%) 59,32% (2,59%) 42,65% (29,12%)

PlayStation 3 45,32% (2,40%) 33,02% (10,75%) 46,53% (2,65%) 45,32% (19,07%)
Wii 60,66% (5,14%) 48,40% (20,21%) 43,57% (32,85%) 60,66% (30,03%)

Wii U 50,19% (3,35%) 49,94% (4,25%) 33,08% (21,20%) 50,19% (22,36%)
PlayStation 4 38,25% (6,17%) 28,60% (10,49%) 46,78% (1,69%) 38,25% (18,75%)

Xbox One 34,88% (10,77%) 32,30% (13,86%) 33,92% (17,75%) 34,88% (21,72%)
Nintendo Switch 50,57% (7,22%) 53,68% (5,90%) 40,23% (22,26%) 50,57% (25,86%)
Xbox Series X/S 52,50% (22,52%) 48,93% (7,79%) 58,21% (22,97%) 52,50% (32,08%)

PlayStation 5 31,17% (8,47%) 27,09% (1,99%) 25,57% (11,73%) 31,17% (14,97%)

Average 51,19% (7,10%) 48,77% (9,32%) 44,06% (15,70%) 49,30% (24,99%)

TABLE V
ACCURACY AND EPOCHS REQUIRED TO TRAIN THE DENSENET201 ARCHITECTURE ACROSS 22 SCREENSHOT DATASETS, USING RANDOM WEIGHT

INITIALIZATION, IMAGENET WEIGHTS, AND ARCADE DATASET WEIGHTS AS INITIAL WEIGHTS. EACH MODEL IS EXECUTED FIVE TIMES USING THE
CROSS VALIDATION APPROACH. THE HIGHEST ACCURACY AND THE LOWEST NUMBER OF EPOCHS FOR EACH DATASET ARE HIGHLIGHTED IN BOLD.

STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

Weights Random ImageNet Arcade
System Epochs Accuracy Epochs Accuracy Epochs Accuracy

Atari 2600 44.6 (3.2) 80.82% (2.17%) 23.6 (1.5) 89.06% (0.53%) 17.6 (0.8) 89.99% (0.98%)
NES 25.4 (1.2) 65.46% (0.85%) 23.0 (3.9) 70.04% (1.91%) 20.8 (2.5) 70.77% (3.14%)

Master System 38.2 (3.0) 67.11% (1.32%) 24.0 (1.5) 73.74% (1.14%) 20.0 (0.9) 74.14% (1.00%)
PC Engine 38.2 (5.1) 74.90% (0.68%) 23.6 (2.1) 80.19% (0.70%) 18.4 (1.4) 80.52% (1.59%)

Mega Drive 29.2 (2.9) 67.40% (1.74%) 24.0 (3.0) 73.44% (2.53%) 21.4 (4.1) 71.48% (4.19%)
Super Nintendo 26.8 (2.1) 66.48% (1.03%) 25.8 (0.7) 74.51% (0.80%) 22.0 (2.9) 73.32% (2.36%)

Sega Saturn 37.8 (3.9) 65.17% (2.42%) 22.4 (1.5) 75.10% (1.35%) 19.2 (1.3) 83.14% (1.15%)
PlayStation 25.4 (1.7) 63.52% (2.36%) 22.6 (3.0) 71.19% (2.78%) 23.0 (3.8) 71.59% (2.44%)

Nintendo 64 46.0 (3.6) 73.93% (3.35%) 26.2 (3.0) 83.67% (1.17%) 19.2 (0.7) 83.37% (2.11%)
Dreamcast 48.8 (1.2) 63.35% (2.18%) 25.0 (2.8) 75.36% (1.90%) 20.4 (3.0) 76.06% (1.40%)

PlayStation 2 37.8 (5.5) 62.00% (2.22%) 25.2 (3.2) 74.11% (0.39%) 22.0 (2.0) 73.13% (0.47%)
GameCube 50.0 (0.0) 71.71% (1.22%) 23.6 (1.5) 82.88% (1.14%) 22.8 (2.3) 82.52% (1.13%)

Xbox 46.2 (4.0) 74.25% (1.05%) 24.0 (1.4) 84.03% (1.38%) 22.4 (1.4) 84.06% (1.62%)
Xbox 360 41.8 (5.2) 68.01% (1.03%) 23.6 (2.4) 79.43% (0.72%) 21.6 (1.5) 78.71% (0.54%)

PlayStation 3 36.8 (8.5) 52.08% (6.77%) 23.8 (2.3) 70.93% (0.90%) 21.0 (1.4) 70.96% (0.54%)
Wii 46.6 (3.6) 73.96% (1.60%) 23.4 (2.1) 83.05% (0.79%) 20.6 (1.4) 82.49% (0.71%)

Wii U 50.0 (0.0) 56.39% (2.02%) 25.6 (6.4) 73.03% (2.66%) 20.6 (2.7) 72.90% (3.46%)
PlayStation 4 26.6 (4.6) 49.18% (5.30%) 24.0 (1.9) 62.19% (0.70%) 22.4 (1.5) 61.63% (0.55%)

Xbox One 43.6 (1.9) 54.28% (1.27%) 21.4 (2.6) 64.96% (1.33%) 20.2 (2.4) 66.25% (1.41%)
Nintendo Switch 49.2 (1.6) 67.74% (2.49%) 24.8 (4.3) 79.90% (1.55%) 24.2 (4.3) 78.98% (0.61%)
Xbox Series X/S 20.6 (15.0) 32.14% (12.78%) 36.2 (16.9) 78.57% (5.98%) 42.4 (15.2) 73.57% (13.80%)

PlayStation 5 42.4 (2.7) 47.82% (1.97%) 24.6 (4.0) 67.58% (2.22%) 21.8 (2.6) 67.36% (1.29%)

Average 38.7 (3.7) 63.53% (2.63%) 24.6 (3.3) 75.77% (1.57%) 22.0 (2.7) 75.77% (2.11%)
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TABLE VI
ACCURACY AND EPOCHS REQUIRED TO TRAIN THE EFFICIENTNETB3 ARCHITECTURE ACROSS 22 SCREENSHOT DATASETS, USING RANDOM WEIGHT
INITIALIZATION, IMAGENET WEIGHTS, AND ARCADE DATASET WEIGHTS AS INITIAL WEIGHTS. EACH MODEL IS EXECUTED FIVE TIMES USING THE
CROSS VALIDATION APPROACH. THE HIGHEST ACCURACY AND THE LOWEST NUMBER OF EPOCHS FOR EACH DATASET ARE HIGHLIGHTED IN BOLD.

STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

Weights Random ImageNet Arcade
System Epochs Accuracy Epochs Accuracy Epochs Accuracy

Atari 2600 47.4 (3.6) 77.47% (2.28%) 28.4 (6.1) 90.36% (1.52%) 24.8 (6.7) 90.64% (1.25%)
NES 22.0 (0.9) 53.75% (2.20%) 15.2 (1.5) 67.80% (4.17%) 13.6 (0.5) 72.14% (0.74%)

Master System 22.0 (1.1) 48.61% (3.19%) 22.0 (1.7) 74.29% (1.23%) 16.2 (2.7) 75.62% (0.97%)
PC Engine 29.0 (3.2) 64.42% (1.95%) 19.2 (1.0) 78.90% (0.84%) 15.4 (0.5) 81.08% (0.71%)

Mega Drive 21.2 (0.4) 54.28% (2.34%) 18.6 (2.9) 73.07% (4.22%) 13.8 (0.8) 74.20% (0.60%)
Super Nintendo 21.8 (1.2) 52.30% (1.14%) 18.2 (3.7) 70.81% (6.09%) 15.4 (2.6) 73.95% (1.53%)

Sega Saturn 22.6 (3.2) 45.93% (5.07%) 22.8 (2.8) 70.50% (0.98%) 15.2 (0.8) 75.10% (1.60%)
PlayStation 22.2 (0.4) 53.81% (1.52%) 21.2 (3.1) 74.02% (1.03%) 15.4 (1.7) 73.56% (0.63%)

Nintendo 64 34.0 (10.5) 58.18% (1.26%) 31.6 (10.3) 77.76% (0.90%) 23.8 (5.6) 83.23% (1.66%)
Dreamcast 35.0 (6.8) 48.44% (2.78%) 23.0 (1.7) 67.58% (0.97%) 21.6 (2.2) 76.43% (1.52%)

PlayStation 2 23.4 (0.8) 52.47% (1.46%) 21.6 (3.3) 73.45% (2.52%) 19.4 (2.0) 75.31% (1.21%)
GameCube 30.2 (4.0) 58.80% (1.22%) 24.2 (2.9) 74.98% (1.40%) 23.8 (6.0) 83.96% (0.96%)

Xbox 27.6 (2.6) 63.89% (1.43%) 29.8 (5.7) 78.60% (2.33%) 21.8 (3.7) 85.11% (1.50%)
Xbox 360 25.6 (3.8) 52.29% (3.92%) 20.8 (0.8) 77.68% (0.86%) 20.2 (1.6) 79.55% (0.65%)

PlayStation 3 24.0 (0.9) 45.97% (1.19%) 20.6 (3.1) 71.82% (0.92%) 18.0 (2.1) 70.88% (0.47%)
Wii 35.6 (6.7) 62.13% (1.53%) 22.6 (1.4) 78.40% (1.64%) 18.4 (4.4) 81.70% (1.11%)

Wii U 33.2 (17.6) 27.48% (16.66%) 22.0 (4.2) 71.87% (2.93%) 28.2 (4.8) 76.52% (4.23%)
PlayStation 4 22.2 (1.7) 40.53% (0.99%) 20.4 (1.6) 64.77% (1.53%) 14.8 (1.6) 60.60% (1.69%)

Xbox One 22.4 (1.0) 40.76% (1.17%) 24.4 (1.4) 63.50% (2.92%) 15.2 (1.5) 65.96% (1.38%)
Nintendo Switch 27.4 (2.7) 44.24% (1.35%) 32.4 (7.2) 78.86% (1.34%) 22.4 (3.4) 81.80% (1.09%)
Xbox Series X/S 47.6 (4.8) 16.07% (4.52%) 40.0 (13.1) 97.14% (5.71%) 50.0 (0.0) 75.71% (16.66%)

PlayStation 5 24.6 (1.5) 35.75% (3.38%) 23.0 (1.1) 62.99% (2.57%) 22.8 (5.8) 66.76% (1.68%)

Average 28.2 (3.6) 49.89% (2.84%) 23.7 (3.7) 74.51% (2.21%) 20.5 (2.8) 76.36% (1.99%)

the network decreased from 26.9 to 24.5.
Table VIII displays the highest accuracy achieved for each

system, showcasing the best combination of architecture and
initial weights. EfficientNetV2S notably outperforms other
architectures, yielding the best results in 15 out of 22 systems,
with one tie alongside DenseNet201. EfficientNetB3 excels in
six systems, while DenseNet201 is the best in two system,
one of them alongside EfficientNetV2S. Concerning the initial
weights, the “Arcade weights” account for the best results in
12 out of 22 systems, while the other ten systems attained their
highest accuracy with the ImageNet initial weights. Contrary
to expectations, systems benefiting from the use of arcade
weights span multiple generations. This indicates that the
complexity of arcade graphics is adequate for producing better
initial weights for various generations of home systems.

VII. LIMITATIONS

One of the limitations of the current approach is that there
is a separate network for each console system, which means
the console system must be known prior to title identification.
In future works, this can be addressed in different ways. The
most straightforward approach would be to treat each game
on each system as a single entity. The drawback is that the
resulting network would have more than a hundred thousand
outputs. Another approach would be to build a network to
detect the console system first, and then another network
specialized for that system, similar to those in this paper,
would identify the title. The drawback in this scenario is that
identifying the system could be challenging, especially with
newer systems that do not have distinctive color palettes or
graphics complexity limitations like older systems. Finally, a

third approach would be to consider each game as an entity
regardless of the system, considering that some games are
available on multiple systems. A network with two parallel
output layers could be used to identify the title and the
system simultaneously. Given a screenshot, the probabilities of
each system and each title could be used together to identify
the title and system among the existing combinations, i.e.,
combinations of titles and systems that do not exist would
be ruled out, and the existing pair with the highest combined
probabilities would be chosen. However, the size of the output
layer would be almost as large as the first approach.

Another limitation of the presented approach is that adding
new game titles requires adding an additional output node to
the output layer. Once a node is added, the new connection
weights must be learned, so the network would need at
least a few more epochs of training. On the other hand, the
convolutional weights, especially in the first layers, may not
change significantly with the addition of new titles. Therefore,
their existing weights could be fine-tuned while the new
connections are trained.

VIII. CONCLUSIONS

This paper explores the application of ten distinct CNN
architectures (VGG16, ResNet50, ResNet152, MobileNet,
DenseNet169, DenseNet201, EfficientNetB0, EfficientNetB2,
EfficientNetB3, and EfficientNetV2S) and three transformers
architectures (ViT-B16, ViT-L32, and SwinT) for identifying
video games through screenshots across 22 diverse home
console systems, from Atari 2600 (first released in 1977) to
PlayStation 5 (first released in 2020). This is a pioneering work
as it is the first attempt to identify video game titles by their
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TABLE VII
ACCURACY AND EPOCHS REQUIRED TO TRAIN THE EFFICIENTNETV2S ARCHITECTURE ACROSS 22 SCREENSHOT DATASETS, USING RANDOM WEIGHT

INITIALIZATION, IMAGENET WEIGHTS, AND ARCADE DATASET WEIGHTS AS INITIAL WEIGHTS. EACH MODEL IS EXECUTED FIVE TIMES USING THE
CROSS VALIDATION APPROACH. THE HIGHEST ACCURACY AND THE LOWEST NUMBER OF EPOCHS FOR EACH DATASET ARE HIGHLIGHTED IN BOLD.

STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

Weights Random ImageNet Arcade
System Epochs Accuracy Epochs Accuracy Epochs Accuracy

Atari 2600 42.0 (6.2) 82.31% (1.77%) 31.8 (3.7) 88.92% (2.74%) 28.8 (5.8) 88.78% (0.82%)
NES 23.0 (0.6) 60.43% (2.11%) 20.6 (1.9) 72.51% (2.40%) 17.4 (0.5) 69.33% (2.64%)

Master System 27.8 (3.0) 61.61% (1.32%) 26.0 (1.4) 76.20% (1.19%) 24.2 (1.2) 74.45% (0.81%)
PC Engine 25.6 (1.5) 68.58% (2.00%) 25.6 (1.6) 80.52% (0.94%) 23.6 (2.6) 79.33% (0.46%)

Mega Drive 23.6 (1.4) 59.26% (1.90%) 27.2 (1.3) 74.56% (3.22%) 20.0 (2.1) 73.11% (1.87%)
Super Nintendo 22.0 (0.6) 59.10% (1.38%) 21.6 (2.7) 72.89% (1.72%) 17.6 (2.7) 71.88% (2.25%)

Sega Saturn 27.0 (3.0) 56.83% (1.96%) 31.0 (3.6) 75.91% (1.11%) 31.8 (8.2) 83.14% (1.26%)
PlayStation 23.2 (1.6) 59.38% (1.88%) 22.0 (3.0) 74.77% (2.49%) 19.4 (2.2) 73.62% (2.20%)

Nintendo 64 31.0 (1.5) 67.11% (2.21%) 33.2 (5.3) 82.28% (3.19%) 26.4 (2.9) 85.23% (1.89%)
Dreamcast 32.6 (6.8) 59.80% (1.18%) 41.2 (6.4) 74.99% (1.83%) 25.6 (3.7) 78.86% (1.45%)

PlayStation 2 24.2 (1.2) 55.53% (1.81%) 25.4 (1.4) 75.14% (3.29%) 25.4 (2.7) 76.73% (0.63%)
GameCube 30.0 (2.0) 63.74% (2.13%) 28.0 (2.4) 81.48% (2.30%) 32.2 (7.6) 85.00% (0.75%)

Xbox 32.2 (4.7) 69.38% (1.94%) 35.0 (5.8) 84.45% (1.32%) 25.8 (4.4) 86.42% (1.45%)
Xbox 360 27.4 (2.6) 60.78% (1.36%) 25.8 (2.3) 80.25% (1.17%) 24.0 (1.4) 79.01% (0.44%)

PlayStation 3 27.0 (1.8) 51.48% (1.03%) 22.8 (2.8) 71.98% (3.04%) 23.4 (2.2) 72.47% (1.08%)
Wii 29.2 (2.9) 69.00% (1.75%) 29.4 (8.5) 83.96% (0.69%) 24.6 (3.0) 83.41% (0.53%)

Wii U 26.8 (3.2) 51.87% (1.81%) 24.8 (3.3) 74.97% (2.43%) 20.4 (5.1) 74.58% (3.80%)
PlayStation 4 23.8 (1.6) 46.96% (2.05%) 21.2 (2.4) 63.17% (2.88%) 20.0 (1.8) 62.53% (1.27%)

Xbox One 27.2 (2.7) 47.73% (2.49%) 25.0 (2.4) 66.25% (2.17%) 22.2 (1.9) 66.04% (1.09%)
Nintendo Switch 23.0 (1.7) 53.22% (1.65%) 34.2 (8.8) 80.47% (1.70%) 33.2 (9.0) 80.59% (1.50%)
Xbox Series X/S 29.8 (16.7) 32.86% (21.39%) 15.6 (1.7) 100.00% (0.00%) 27.8 (6.5) 94.64% (6.59%)

PlayStation 5 22.2 (1.7) 45.74% (2.83%) 23.4 (2.9) 68.10% (2.52%) 25.4 (5.2) 68.62% (1.74%)

Average 27.3 (3.1) 58.30% (2.73%) 26.9 (3.4) 77.44% (2.02%) 24.5 (3.8) 77.63% (1.66%)

TABLE VIII
THE HIGHEST ACCURACY FOR EACH SYSTEM, ACHIEVED WITH THE BEST

COMBINATION OF ARCHITECTURE AND INITIAL WEIGHTS.

System Architecture Weights Accuracy

Atari 2600 EfficientNetB3 Arcade 90.64%
NES EfficientNetV2S ImageNet 72.51%

Master System EfficientNetV2S ImageNet 76.20%
PC Engine EfficientNetB3 Arcade 81.08%

Mega Drive EfficientNetV2S ImageNet 74.56%
Super Nintendo DenseNet201 ImageNet 74.51%

Sega Saturn DenseNet201
EfficientNetV2S Arcade 83.14%

PlayStation EfficientNetV2S ImageNet 74.77%
Nintendo 64 EfficientNetV2S Arcade 85.28%

Dreamcast EfficientNetV2S Arcade 78.86%
PlayStation 2 EfficientNetV2S Arcade 76.73%

GameCube EfficientNetB3 Arcade 83.96%
Xbox EfficientNetV2S Arcade 86.42%

Xbox 360 EfficientNetV2S ImageNet 80.25%
PlayStation 3 EfficientNetV2S Arcade 72.47%

Wii EfficientNetV2S ImageNet 83.96%
Wii U EfficientNetB3 Arcade 76.52%

PlayStation 4 EfficientNetB3 ImageNet 64.77%
Xbox One EfficientNetV2S ImageNet 66.25%

Nintendo Switch EfficientNetB3 Arcade 81.80%
Xbox Series EfficientNetV2S ImageNet 100.00%

PlayStation 5 EfficientNetV2S Arcade 68.62%

Average 78.79%

screenshots. The experiments confirmed the hypothesis that
CNN’s inherent capacity of automatically extracting relevant
features from images is sufficient to identify video game titles
from single screenshots in most scenarios, without relying on
other features. Using pre-trained weights from the ImageNet
dataset, an average accuracy of 77.44% over all the 22 systems

is achieved with the EfficientNetV2S architecture. It was
also the best architecture for 16 of the 22 systems. While
transformer architectures consistently outperform CNNs in
image classification tasks, this was not the case for identifying
video games from screenshots. Although transformers could
learn in most scenarios, their average accuracy was lower than
that of all CNNs, except for VGG16.

When weights pre-trained on another screenshot dataset
(Arcade) are used as initial weights instead of those from
ImageNet, the accuracy improves for both EfficientNetB3 and
EfficientNetV2S, while the number of epochs required to con-
verge decreases. The average accuracy across all 22 systems
increases from 77.44% to 77.63% with EfficientNetV2S, and
the number of epochs required for convergence decreases
from 26.9 to 24.5. Although the average accuracy is slightly
higher, only nine of the 22 systems actually show improve-
ments. In contrast, EfficientNetB3 shows a more significant
improvement, with average accuracy increasing from 74.51%
to 76.36%, and 19 of the 22 systems showing improvements.
Additionally, the number of epochs required for convergence
decreases from 24.4 to 19.9. Interestingly, DenseNet201 shows
improvements in 10 of the 22 systems, but the average
accuracy remains the same regardless of whether ImageNet
or Arcade weights are used. However, the epochs required for
convergence still decrease from 24.6 to 22.0.

Overall, considering only the best architecture and weights
for each system, an accuracy of 78.79% is achieved. Efficient-
NetV2S is responsible for the best results in 15 from the 22
systems. The “Arcade weights” are responsible for the best
results in 12 of the 22 systems, i.e., starting from weights
trained on a different dataset, but the same task, are better
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than starting with the more general ImageNet weights in most
scenarios.

The experiments conducted for this paper provided evi-
dence of the efficacy of CNNs in identifying video games
from screenshots. Since the largest EfficientNet architecture
explored in this paper achieved the best results, future research
will explore even larger CNN architectures and CNN ensem-
bles to further enhance accuracy. The challenges of adding new
games to trained networks and identifying a game title without
knowing its system a priori should also be investigated, as
discussed in Section VII. Additionally, this study suggests
potential applications in other screenshot-based tasks, such as
genre classification or similar game searches, leveraging the
efficacy of CNNs in video game identification.
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