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Chaotic Phase Synchronization for Visual Selection

Fabricio A. Breve, Liang Zhao, Marcos G. Quiles, and Elbert E. N. Macau

Abstract—Chaotic phase synchronization among coupled os-
cillators is a phenomenon of interest in many physical and
engineering systems. It has also been observed in biological
systems, where groups of different functional units interact with
each other in order to produce coherent behaviors in higher
levels. While biological systems have facility to capture salient
object(s) in a given scene, visual selection is still a challenging
task to artificial visual systems. In this paper, a visual selection
mechanism based on chaotic phase synchronization is proposed.
Oscillators representing the salient object in a given scene
are phase synchronized, while no synchronization is observed
for background objects. In this way, the salient object is
highlighted. Due to the modeling by phase synchronization
instead of complete synchronization, the proposed model is
robust, biologically inspired and good simulation results were
achieved.

I. INTRODUCTION

SYNCHRONIZATION is a common phenomenon ob-
served in science, engineering and social life. It is char-

acterized by a tendency of two or more systems to operate
in synchrony. It has been observed in systems as diverse as
clocks, singing crickets, cardiac pacemakers, firing neurons
and applauding audiences [1]. There are different phenomena
that are referred to as “synchronization” in chaotic systems,
like complete synchronization and phase synchronization.
Complete synchronization is defined as the complete coinci-
dence of the trajectories of the coupled individual chaotic
systems in the phase space. Mathematically, given state
variable vectors x and y representing two dynamical systems,
they are said to be completely synchronized if |x− y| → 0
as t → ∞. On the other hand, phase synchronization takes
place in cases involving almost identical dynamical systems
and it means that the phase difference between the systems
is kept bounced over the time, while their amplitudes remain
chaotic and may be uncorrelated [1], [2].

Evidence from physiological experiments has been accu-
mulating with strong indication on the existence of syn-
chronous rhythmic activities also in different areas of the
brain of human beings, cats and monkeys [3], [4], [5],
[6], [7], [8], [9]. It has been suggested that this neuronal
oscillation and synchronization have a role in feature binding
and scene segmentation problems. Von der Malsburg [10]
proposed a theory, called temporal correlation, where objects
are represented by the temporal correlation of the firing
activities of spatially distributed neurons coding different
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Research, São José dos Campos-SP, Brazil (email: elbert@lac.inpe.br)

This work was supported by the State of São Paulo Research Founda-
tion (FAPESP) and the Brazilian National Council of Technological and
Scientific Development (CNPq)

object features. In practice, a special form of temporal cor-
relation, called oscillatory correlation, has been successfully
applied to several computational problems [11], [12], [13],
[14]. The oscillatory correlations can be described by the
following rule: oscillators which represent different features
of the same object are synchronized, while oscillators coding
different objects are desynchronized [14]. The model was
also extended to utilize the properties of chaos and chaotic
synchronization in order to achieve unlimited capacity of
segmentation [15], [16], [17].

The role of synchronization in brain functions has received
additional support from neurobiological findings [18]. For
example, it has been shown that visual attention is strongly
linked with synchronization, in which the coherence among
neurons responding to the same stimulus is increased [5], [8],
[19], [20]. Visual attention is the capacity developed by living
systems to select just relevant environmental information
to feed their sensory systems. It reduces the combinatorial
explosion resulting from the analysis of all incoming visual
information [21], [22] and identifies the region of the visual
input that will reach awareness level (focus of attention)
while irrelevant information is suppressed [23], [24]. Here,
we consider pixel contrast as visual attention clue, i.e., the
object with the higher contrast in the scene is considered as
the most salient object.

Owning to the relation between synchronization and visual
attention, some visual attention models have been proposed
where the complete synchronization among oscillators are
used to represent objects [25], [26], [27], [28]. However,
the synchronization phenomena observed in real experiments
rarely represent a complete synchronization and other forms
of synchronization should be considered. Particularly, phase
synchronization is a model of reciprocal interaction, which
is believed to be the key mechanism for neural integration in
brain. Direct evidence supporting phase synchrony as a basic
mechanism for brain integration has recently been provided
by extensive studies of visual binding [29].

In this paper we propose a chaotic oscillatory correlation
network for object selection. In contrast to other oscillation-
based object selection models (see [25], [26]), our model is
the first to use chaotic phase synchronization. It is based
on a network of coupled chaotic Rössler oscillators [2],
which is used to create a selection mechanism where one
of several objects is segmented and highlighted (receives the
focus of attention). As the system runs, the group of neurons
representing the salient object of a visual input is locked in
phase, which means each oscillator still produces a unique
chaotic trajectory, but with their phases bounded. At the same
time, the groups of neurons representing other objects in
the scene remain with their phases uncorrelated. The phase
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synchronization mechanism is more robust than the tradi-
tional complete synchronization and it can be achieved with
a much smaller coupling strength, thus avoiding convergence
to infinity when stronger coupling strength is applied.

This paper is organized as follows. In section 2, the chaotic
phase synchronization is presented. In section 3 the proposed
model is described. In Section 4, the results obtained through
simulation of the proposed model applied to synthetic and
real images are showed. Finally, in Section 5, conclusions
are drawn.

II. CHAOTIC PHASE SYNCHRONIZATION

Two oscillators are called phase synchronized if their
phase difference φ1−φ2 is kept bounded while their ampli-
tudes may be completely uncorrelated [1], i.e. |φ1−φ2| < M ,
as t → ∞. Here, the phase φ of an oscillator is defined as
follows,

φ = Υ(arctan(y/x)) (1)

where x and y are variables of the oscillator and Υ represents
the unwrap operation. Due to the unwrap operation, φ is
always an increasing variable.

In order to study phase synchronization and desynchro-
nization of chaotic oscillators we consider two almost iden-
tical coupled Rössler systems as follows:

ẋ1,2 = −ω1,2y1,2 − z1,2 + k(x2,1 − x1,2),
ẏ1,2 = ω1,2x1,2 + ay1,2,

ż1,2 = b + z1,2(x1,2 − c), (2)

where parameters a = 0.15, b = 0.2 and c = 10 are held
constant with the same values used by Rosenblum et al. [2],
ω1,2 governs the frequency of the oscillator and k is the
coupling strength. Let ∆ω be the difference between ω1 and
ω2 and φ1,φ2 be the phases of the two oscillators.

For a fixed ∆ω, as k increases, we observe a transition
from unsynchronized regime, i.e. |φ1−φ2| → ∞ as t →∞,
to a synchronous state, where the phase difference does not
grown with time. This transition is illustrated in Fig. 1. It is
important to notice that while in complete synchronization of
chaotic oscillators the fields coincide, here the instant fields
x1,2, y1,2 and z1,2 do not coincide, as illustrated in Fig.
2, which shows the uncorrelated chaotic amplitudes of two
phase synchronized Rösller oscillators. Here the amplitudes
of the Rössler oscillators are defined as follows [30]:

A =
√

x2 + y2. (3)

III. MODEL DESCRIPTION

The proposed model is a two dimensional network of
Rössler Oscillators and it is governed by the following
equations:

ẋi,j = −ωi,jyi,j − zi,j + k∆+xi,j + ηi,j∆−xi,j ,

ẏi,j = ωi,jxi,j + ayi,j ,

żi,j = b + zi,j(xi,j − c). (4)
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Fig. 1: Phase difference of two coupled Rössler systems ver-
sus time for nonsynchronous (k = 0.01), nearly synchronous
(k = 0.036) and synchronous (k = 0.045) states. ∆ω = 0.04
(ω1 = 0.98 and ω2 = 1.02).
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Fig. 2: Uncorrelated chaotic amplitudes A1 and A2 when
k = 0.045 and ∆ω = 0.04 (ω1 = 0.98 and ω2 = 1.02).

where (i, j) is a lattice point with 1 ≤ i ≤ N , 1 ≤ j ≤ M .
k is the positive coupling strength and is set accordingly
to the scene. ηi,j is a negative coupling strength which is
set accordingly to the pixel contrast. ωi,j is used to code
pixel (i, j) intensity, as it will be explained later. ∆+xi,j and
∆−xi,j are positive and negative coupling terms respectively.
They are defined by:

∆±xi,j = γi−1,j−1;i,j(xi−1,j−1 − xi,j) +
γi−1,j;i,j(xi−1,j − xi,j) +
γi−1,j+1;i,j(xi−1,j+1 − xi,j) +
γi,j−1;i,j(xi,j−1 − xi,j) +
γi,j+1;i,j(xi,j+1 − xi,j) +
γi+1,j−1;i,j(xi+1,j−1 − xi,j) +
γi+1,j;i,j(xi+1,j − xi,j) +
γi+1,j+1;i,j(xi+1,j+1 − xi,j) (5)
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where

γi,j;p,q =
{

1, if oscillator (i, j) is coupled to (p, q),
0, otherwise.

(6)
The segmentation and selection strategy is described be-

low. Given an input image, the network is organized so
that each oscillator represents a pixel of the image, which
means that each oscillator receives a stimulation from its
corresponding pixel in the image. In this model, the ωi,j

parameter of each oscillator is chosen to encode the intensity
(gray level) of the corresponding pixel. The intensity is coded
uniformly in [1 − ∆ω

2 1 + ∆ω
2 ] interval, where ∆ω is set

accordingly to the scene. As the system runs, the oscillators
self-organize themselves according to a predefined similarity
criterion, such that the connections in ∆+ between pairs
of neighboring oscillators with similar gray level will be
maintained, while those connections between oscillators of
very different gray level will be cut. Consequently, all oscil-
lators belonging to the same segment will have their phases
synchronized, while their amplitudes remain uncorrelated. In
this way, objects in a given scene can be segmented. All the
connections inside ∆+ are adaptive, i.e., if two connected
oscillators becomes unsynchronized (|φ1 − φ2| > π) at any
time, the connection between them is immediately cut. So, if
a pixel is incorrectly coupled to an object it will not disturb
the object synchronization for long.

The proposed model also includes a negative coupling
strength in order to disturb the synchronization among oscil-
lators representing non-salient objects, so only the salient
object remains synchronized. The connections in ∆− are
always on, which means that each oscillator is always
connected to their 8-nearest-neighbors, except, of course, for
the border oscillators which have less neighbors. While the
positive coupling strength k is the same for every oscillator,
the negative coupling strength ηi,j is different for each
oscillator and it is set accordingly to the contrast of the pixel
in relation to the scene, as follows:

ηi,j = α
Ci,j −min(C)

max(C)
, (7)

where α is a negative constant (in this paper we fixed α =
−0.02) and Ci,j is the contrast of pixel (i, j), which is given
by:

Ci,j =

(∑
d

|F d
i,j − F d

avg|
)σ

, (8)

where F d
i,j is the feature d value for pixel (i, j), σ is set

accordingly to the scene, and F d
avg is the mean value for

feature d, which is given by:

F d
avg =

1
N.M

i=N∑
i=1

j=M∑
j=1

F d
i,j . (9)

In this work 4 features were used, F I , FR, FG and FB ,
which corresponds to the values of intensity (I), red (R),
green (G) and blue (B) components from each pixel respec-
tively.

In oscillators which corresponding pixels have the high-
est contrast, the negative coupling strength tends to zero
(η → 0), thus the objects formed by high contrast pixels are
nearly unaffected by negative strengths, at the same time that
the positive strengths keep their oscillators synchronized in
phase. Meanwhile, in oscillators which corresponding pixels
have less contrast, the negative coupling strength is higher
(η → α), thus these oscillators will repel each other. Finally,
after some time, only the oscillators corresponding to the
salient object will remain with their trajectories synchronized
in phase while the other objects will have trajectories with
different phases. These features satisfy the following essen-
tial requirements of a Visual Selection system:
• considering as input one or a combination of features

(Saliency Map), the neural network must highlight (se-
lect) the region of the image where the focus of attention
should be directed;

• all other locations of the visual input must be suppressed
by the system in order to keep the focus of attention on
just one of the active objects.

IV. COMPUTER SIMULATIONS

In this section, we present the simulation results of visual
selection tasks by using the proposed model on synthetic
and real images. We consider the salient object to be the
one which has the largest intensity and color contrast to
the other parts of the image. This assumption receives direct
support from biological experiments, which show that feature
contrast is more important than absolute value of features in
visual searching tasks performed by biological visual systems
[31], [32].

The first experiment was carried out by using the artificial
image shown in Fig. 3a, which has 14 objects, 13 of them
are blue and only one is yellow (object number 6), thus
becoming the salient object. The free parameters were set
as follows: k = 0.005, σ = 1.0 and ∆ω = 0.2. Fig.
3b shows the behavior of 20 randomly chosen oscillators
(pixels) from each object, where each line corresponds to
an oscillator. Dark colors represent the lowest values for the
component x of the corresponding oscillator, while bright
colors represent the higher values. From lines 101 to 120
we can see that the oscillators corresponding to the salient
object are phase synchronized (see the formed pattern), while
the rest of the oscillators have their phases uncorrelated.
Fig. 3c shows the oscillators phase growth through time,
and it is easier to notice that the oscillators corresponding
to the salient object form a plain platform, while the other
oscillators have different phases. Notice that the numbers
appearing in Fig. 3a were not in the image presented to the
system, they were only used so that the reader can easily
locate the corresponding pixels in the results in Figs. 3b and
3c.

The second experiment was carried out by using the
artificial image shown in Fig. 4a, like in Fig. 3a there are 14
objects, and again the yellow one (object number 6) is the
salient. However, in this case there is less contrast between
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(a) Source image (160 × 160 pixels).
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(b) Oscillators behavior.

(c) Phase growth.

Fig. 3: Artificial image with 14 objects.

the salient object and the others. The free parameters were
set as follows: k = 0.005, σ = 1.0 and ∆ω = 0.2, the same
values that were used in the previous experiment, so that
we can observe what happens when there is less contrast
in the scene. Fig. 4b shows the behavior of 20 randomly
chosen oscillators (pixels) from each object, where each
line corresponds to an oscillator. From lines 101 to 120 we
can see the oscillators corresponding to the salient object,
and again the formed pattern clearly indicates that these
oscillators are phase synchronized, however phases from

oscillators corresponding to other objects are not completely
uncorrelated. Actually, some of the oscillators even show
phase synchronized behavior for short periods, which means
they are not sufficiently inhibited by the salient object. Fig.
4c shows the oscillators phase growth through time, and in
this case, although the oscillators corresponding to the salient
object still form a plain platform, there are other oscillators
that have high phase growth, however they form an irregular
platform, since they cannot keep their phase synchronization
plateau for long. Notice that we could easily prevent this
behavior by setting a higher value for the σ parameter,
compensating for the less contrast in the scene. In order
to confirm the above mentioned behavior, we ran the same
experiment again with all the same parameters, except for σ,
which had its value raised from 1 to 4. The results are shown
in Figs. 4d and 4e, and now we can observe that the salient
object was able to completely inhibit the other objects to be
phase synchronized, as it was expected. Once more, numbers
appearing in Fig. 4a were not in the image presented to the
system.

Our third experiment is performed by using the real image
shown by Fig. 5a, where the salient object is the “bird”,
which contrasts with the “sky”. The free parameters were set
as follows: k = 0.02, σ = 1.0 and ∆ω = 0.02. In Fig. 5b
we can see the behavior of 300 randomly chosen oscillators
(pixels) from the image, the first 150 lines corresponds to the
background “sky” and the other 150 lines corresponds to the
“bird”. Fig. 5c shows the oscillators phase growth through
time. Both graphics show that the system chooses to deliver
attention to the “bird” as it was expected.

Our forth experiment is performed by using the real image
shown by Fig. 6a, the salient object “dog” is linearly non-
separable, since it is surrounded by the background “grass”.
The free parameters were set to: k = 0.2, σ = 2.0 and
∆ω = 0.02. In Fig. 6b we can see the behavior of 300
randomly chosen oscillators (pixels) from the image, the first
150 lines corresponds to the “grass” and the other 150 lines
corresponds to the “dog”. Fig. 6c shows the oscillators phase
growth through time. Again, it is easier to notice that the
system chooses to deliver attention to the “dog” as it was
expected.

Our last experiment is performed by using another real
image, shown by Fig. 7a, with several objects. The free
parameters were set as follows: k = 0.02, σ = 1.0 and
∆ω = 0.02. Fig. 7b shows the behavior of 300 randomly
chosen oscillators (pixels) from the image, so the first 150
lines corresponds to the “leaves” and the other 150 lines
corresponds to the “flower”. Fig. 7c shows the oscillators
phase growth through time. Our model selected the “flower”,
which agrees to our visual inspection.

V. CONCLUSIONS

This paper presented a visual selection mechanism based
on a network composed of chaotic Rössler oscillators, taking
advantage of its phase synchronization behavior. This mech-
anism can be seen as part of a visual attention system, which
is responsible for selecting one of several regions of interest
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(a) Source image (160 × 160 pixels).
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(b) Oscillators behavior, σ = 1. (c) Phase growth, σ = 1.
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(d) Oscillators behavior, σ = 4. (e) Phase growth, σ = 4.

Fig. 4: Artificial image with 14 objects and less contrast.
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(a) Source image (320 × 240 pixels).
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(b) Oscillators behavior.

(c) Phase growth.

Fig. 5: Real Image - “Bird”.

into the visual input image. The proposed model utilize the
properties of chaos and phase synchronization to discriminate
the salient object from the visual input while keeping the
non-salient, or less salient, objects unsynchronized.

Computer simulations have shown that our model can be
applied as an object selection model. Also, it is important
to notice the robustness of the nontrivial phase synchro-
nization, which requires only a small coupling strength in
order to keep the oscillators phase synchronized. Moreover,
phase synchronization can also be observed in nonidentical

(a) Source image (320 × 240 pixels).
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(b) Oscillators behavior.

(c) Phase growth.

Fig. 6: Real Image - “Dog”.

systems, which is a more plausible case that typically takes
place in nature, where subsystems are never identical.

The model considers the contrast between an object and
the whole scene, but it could be easily modified in order to
consider the contrast between an object and its neighborhood
as well, thus detecting the salient object in more homoge-
neous scenes, where although an object is not so different
from all the others, it still gets the focus of attention due to
the contrast among itself and its closer neighbors.

In this work the free parameters were set empirically
388



(a) Source image (320 × 240 pixels).
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(b) Oscillators behavior.

(c) Phase growth.

Fig. 7: Real Image - “Flower”.

according to the input image. The σ parameter defines how
much the salient object will inhibit the other objects in the
scene, as demonstrated in the second experiment. When the
salient object is homogenous there is no harm in setting
a high value for σ. However, when the scene presents a
larger and more heterogenous salient object, the σ parameter
has to be chosen carefully in order to prevent the salient
object from inhibiting other parts of itself if this is not a
desirable behavior. The other parameters are also sensitive,
the positive coupling strength k cannot be set too low because

it would not be able to keep the salient object synchronized,
and neither it can be set too high because it would delay
or even prevent the inhibition of non-salient objects. The
∆ω parameter defines how much the oscillators will differ
from each other based on their respective pixel intensity,
and consequently it will also define their different oscillation
speeds and how much their phases growth tend to be different
when they are not coupled. Therefore, ∆ω has to be carefully
chosen, as it directly affects the synchronization of the salient
object and the inhibition of the non-salient ones. As a future
work, we intend to develop some mechanism to optimize
these parameters automatically.

REFERENCES

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A uni-
versal concept in nonlinear sciences. Cambridge University Press,
2001.

[2] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchroniza-
tion of chaotic oscillators,” Phisical Review Letters, vol. 76, no. 7, pp.
1804–1807, March 1996.

[3] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and
H. J. Reitboeck, “Coherent oscillation: A mechanism of feature linking
in the visual cortex?” Biological Cybernetics, vol. 60, pp. 121–130,
1988.

[4] K. Engel, P. Knig, A. K. Kreiter, and W. Singer, “Interhemispheric
synchronization of oscillatory neuronal responses in cat visual cortex,”
Science, vol. 252, pp. 1177–1178, 1991.

[5] P. Fries, J. H. Reynolds, A. E. Rorie, and R. Desimone, “Modulation
of oscillatory neuronal synchronization by selective visual attention,”
Science, vol. 291, no. 5508, pp. 1560–1563, 2001.

[6] P. Gong, A. R. Nikolaev, and C. van Leeuwen, “Scale-invariant
fluctuations of the dynamical synchronization in human brain electrical
activity,” Neuroscience Letter, vol. 336, pp. 33–36, 2003.

[7] M. Grey, P. Knig, A. K. Engel, and W. Singer, “Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects
global stimulus properties,” Nature, vol. 338, pp. 334–337, 1989.

[8] Y. J. Kim, M. Grabowecky, K. A. Paller, K. Muthu, and S. Suzuki,
“Attention induces synchronization-based response gain in steady-state
visual evoked potentials,” Nature Neuroscience, vol. 10, no. 1, pp.
117–125, 2007.

[9] V. N. Murthy and E. E. Fetz, “Coherent 25- to 35-hz oscillations in
the sensorimotor cortex of awake behaving monkeys,” Academy Sci.
USA, vol. 89, pp. 5670–5674, 1992.

[10] C. von der Malsburg, “The correlation theory of brain function,”
Internal report 81-2: Max-Planck Institute for Biophysical Chemistry,
Gttingen, Germany, Tech. Rep., 1981.

[11] D. Terman and D. L. Wang, “Global competition and local cooperation
in a network of neural oscillators,” Physica D, vol. 81, pp. 148–176,
1995.

[12] C. von der Malsburg and W. Schneider, “A neural cocktail-party
processor,” Biological Cybernetics, vol. 54, pp. 29–40, 1986.

[13] D. L. Wang and D. Terman, “Image segmentation based on oscillatory
correlation,” Neural Computation, vol. 9, pp. 805–836, 1997.

[14] D. L. Wang, “The time dimension for scene analysis,” IEEE Transac-
tions on Neural Networks, vol. 16, no. 6, pp. 1401–1426, 2005.

[15] D. Hansel, “Synchronization and computation in a chaotic neural
network,” Physical Review Letters, vol. 68, no. 5, pp. 718–721, 1992.

[16] L. Zhao and E. E. N. Macau, “A network of dynamically coupled
chaotic maps for scene segmentation,” IEEE Transactions on Neural
Networks, vol. 12, no. 6, pp. 1375–1385, 2001.

[17] L. Zhao, E. E. N. Macau, and N. Omar, “Scene segmentation of the
chaotic oscillator network,” International Journal of Bifurcation and
Chaos, vol. 10, no. 7, pp. 1697–1708, 2000.

[18] W. J. Jermakowicz and V. A. Casagrande, “Neural networks a century
after cajal,” Brain Research Reviews, vol. 55, no. 2, pp. 264–284, 2007.

[19] C. Buia and P. Tiesinga, “Attentional modulation of firing rate and
synchrony in a model cortical network,” Journal of Computational
Neuroscience, vol. 20, pp. 247–264, 2006.

389



[20] E. Niebur and C. Koch, “A model for neuronal implementation
of selective visual attention based on temporal correlation among
neurons,” Journal of Computational Neuroscience, vol. 1, pp. 141–
158, 1994.

[21] F. Shic and B. Scassellati, “A behavioral analysis of computational
models of visual attention,” International Journal of Computer Vision,
vol. 73, no. 2, pp. 159–177, 2007.

[22] J. K. Tsotsos, “On the relative complexity of active vs. passive visual
search,” International Journal of Computer Vision, vol. 7, pp. 127–141,
1992.

[23] L. Itti and C. Koch, “Computational modelling of visual attention,”
Nature Reviews Neuroscience, vol. 2, pp. 194–203, 2001.

[24] L. Carota, G. Indiveri, and V. Dante, “A softwarehardware selective
attention system,” Neurocomputing, vol. 58-60, pp. 647–653, 2004.

[25] D. L. Wang, “Object selection based on oscillatory correlation,” Neural
Networks, vol. 12, pp. 579–592, 1999.

[26] Y. Kazanovich and R. Borisyuk, “Object selection by an oscillatory
neural network,” Biosystems, vol. 67, pp. 103–111, 2002.

[27] M. G. Quiles, L. Zhao, and R. Romero, “A selection mechanism based
on a pulse-coupled neural network,” in The 20th International Joint
Conference on Neural Networks (IJCNN), Orlando-US, 2007, pp. 1–6.

[28] L. Zhao, F. Breve, M. Quiles, and R. Romero, “Visual selection
and shifting mechanisms based on a network of chaotic wilson-
cowan oscillators,” in The 3rd International Conference on Natural
Computation (ICNC’07), Haikou-China, 2007, pp. 1–6.

[29] F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The
brainweb: Phase synchronization and large-scale integration,” Nature
Reviews Neuroscience, vol. 2, pp. 229–239, April 2001.

[30] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, “Phase
synchronization effects in a lattice of nonidentical rössler oscillators,”
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