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Abstract

In this paper, a Visual Selection Mechanism based on a
lattice of coupled chaotic Wilson-Cowan oscillators is pro-
posed. The oscillators representing each object in a given
visual scene are synchronized to produce a chaotic trajec-
tory. Cooperation and competition mechanisms are also in-
troduced to accelerate oscillating frequency of the salient
object as well as to slow down other objects in the same
scene. The model can not only discriminate each object
among others in a given visual scene, but also deliver the
focus of attention to the salient object. In comparison to
other visual selection approaches, this model presents at
least two new features. First, it is able to highlight objects
in complex forms, including those that are non-linear sep-
arable. Second, oscillators representing the salient object
will jump from chaotic phase to periodic phase. This be-
havior matches well to biological experiments on pattern
recognition of rabbit. Computer simulations are performed
and the results show that the proposed model is promising
as a Selection Mechanism embedded in a Visual Attention
System.

1. Introduction

Visual attention is an efficient way that the biological

systems, such as humans, have developed to address the re-

duction of provided visual information. This reduction is an

essential mechanism due to the limited processing capacity

of the neuronal hardware. Attention appears to optimize the

search procedure by selecting a number of possible candi-

date image and feature subsets which can be used in tasks

such as recognition [17]. It is an efficient mechanism to

break down complex tasks, such as scene understanding,

into a series of small localized computational tasks [7]. Ac-

cording to Tsotsos et al. [14], intermediate and higher visual

processes seem to select part of the sensory information re-

ceived from the world and use just these selected data in

a further processing. Visual attention is also responsible

for reducing the combinatorial explosion resulting from the

analysis of all incoming sensory information and possible

image relationships [11, 13] and for identifying the part of

the visual input where the processing is performed at the

same time which irrelevant visual information is suppressed

[3].

Visual attention is generated by a combination of in-

formation from the retina and early visual cortical areas

(bottom-up attention - scene dependent) as well as feedback

signals from areas outside of the visual cortex (top-down

attention - task dependent) [8, 9]. Bottom-up attention is

formed by simple features extracted from the image, such

as intensity, stereo disparity, color, orientation, and others

[8]. All this information is combined to create a saliency

map which represents the conspicuity points in the visual

input. The top-down attention signals are responsible for

modulating the competition of all the points generated by

the saliency map. This information can be, for example, a

visual search for a specific object or features into the visual

input.

By using these two mechanisms: bottom-up and top-

down mechanisms, several models have been proposed and

can be divided in two different approaches. The first ap-

proach belongs to computational neuroscience area, where

the computational models are realistic implementations of

the biological systems and they are used to simulate and

understand biological systems [4, 5, 8]. The second ap-

proach is related to computer vision, where the models are

developed to reduce the amount of incoming data by select-

ing only part of the visual information for further process-

ing improving the performance or efficiency of the system

[3, 9, 10, 13, 14, 17]. The model introduced in this paper be-

longs to the second approach where computer vision tasks

are taken into account.
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Most of the bottom-up visual attention models are re-

lated to the concept of a Saliency Map [8]. In these models,

the first stage of processing is responsible to decompose the

input image into a set of feature maps. After that, a saliency

map is generated by a combination of those feature maps.

The saliency map is a topographical map which represents,

by a scalar quantity, all salient points over the entire input

visual stimulus [8, 9]. The main purpose of this map is to

guide a selection mechanism, which is responsible for de-

livering the focus of attention in a specific (or most con-

spicuity) region of the image.

According to Tsotsos et al. [14], the mechanisms used

by the visual attention appear to have, among others, the

following components: a Selection mechanism to select a

region of interest in the visual input; selection and extrac-

tion of the features from the input signal; the control of in-

formation through the system; and a shifting mechanism re-

sponsible to change the focus of attention among the several

conspicuity point over the image.

Although several models of bottom-up visual attention

have been proposed, the Selection mechanism used by these

models are implemented by a Winner-Take-All (WTA) neu-

ral network where just one neuron is activated but not the

entire object becomes salient. For example, in the model

proposed in [9], when a neuron receives the focus of at-

tention, a circle with a fixed radius is considered to be the

region of attention of the model. In this case, it is not possi-

ble to deliver the attention to complex objects that are non-

linear separable. To deal with this limitation, new object

selection mechanism should be developed.

von der Malsburg [15] proposed a mechanism of tempo-

ral correlation as a representational framework. This theory

suggested that objects are represented by the temporal cor-

relation of the firing activities of spatially distributed neu-

rons coding different features of an object. A natural way

of encoding temporal correlation is by using synchroniza-

tion of oscillators where each oscillator encodes some fea-

tures of an object [12, 16, 18, 19]. Inspired from the bi-

ological findings and von der Masburg’s brain correlation

theory, Wang and his collaborators have developed oscilla-

tory correlation theory for scene segmentation [1, 2, 12, 20],

which can be described by the following rule: the neurons

which process different features of the same object are syn-

chronized, while neurons which code different objects are

desynchronized. There are two basic mechanisms working

simultaneously in each oscillatory correlation model: syn-

chronization and desynchronization. The former serves to

group neurons into objects while the latter serves to distin-

guish one group of synchronized neurons (an object) from

another. Oscillatory correlation theory has been extended

and successfully applied to various tasks of scene analysis,

such as image segmentation, motion determination, audi-

tory signal segregation, and perception ([18] and references

there in). Another way to model oscillatory correlation and

to achieve unlimited capacity of segmentation (number of

objects can be segmented in a given scene) is to utilize the

properties of chaos and chaotic synchronization [6, 21, 22].

In the model proposed by Zhao et. al. [22], a large num-

ber of locally coupled chaotic oscillators can be synchro-

nized, so that each object in a given scene is represented

by a synchronized chaotic trajectory in the corresponding

network. Consequently, all such chaotic trajectories can be

easily separated by the high sensitivity to initial conditions,

which is the hallmark of chaos, and the fact that a chaotic

trajectory is dense in its invariant set. With this procedure,

the authors claim that the model has unbounded capacity of

object segmentation.

In this paper, we construct a chaotic oscillatory correla-

tion network for object selection. Our model is based on a

network of coupled chaotic Wilson-Cowan oscillators [22].

Such a network is used to create a selection mechanism

where one of several objects is highlighted (receives the fo-

cus of attention). As the system runs, each group of neurons

representing an object of a visual input is synchronized and

produce a unique chaotic trajectory. At the same time, a

competition mechanism is also introduced, where synchro-

nized neurons cooperate each other to accelerate their fir-

ing frequencies and slow down other neurons with different

oscillating activities. Finally, the most salient object will

jump to a high frequency periodic oscillating phase, while

all other objects will be silent. In this paper, we consider

pixel intensity as visual attention clue, i.e., the brightest ob-

ject is considered as salient object.

The rest of the paper is organized as follows. In sec-

tion 2, the segmentation process performed by a network

of Wilson-Cowan oscillators is described and the proposed

model are presented. In Section 3, the results obtained

through simulation of the proposed model applied to syn-

thetic images are showed. Finally, in Section 4, conclusions

are drawn.

2. Model Description

In this section, we first present a network of coupled

chaotic Wilson-Cowan oscillators for scene segmentation.

Then we introduce a new selection mechanism, embedded

in the segmentation network, to accomplish visual attention

task.

2.1. Scene Segmentation using Coupled Wilson-
Cowan Oscillators

The model is a two dimensional network governed by

the following equations:
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ẋi,j = −axi,j + G(cxi,j + eyi,j + Ii,j − θx) + k∆xi,j

ẏi,j = −byi,j + G(dxi,j + fyi,j − θy) + k∆yi,j (1)

G(v) =
1

1 + e−(v/T )

where (i, j) is a lattice point with 1 ≤ i ≤ N , 1 ≤ j ≤ M .

k is the coupling strength. ∆xi,j and ∆yi,j are coupling

terms among excitatory units and inhibitory units, respec-

tively. They are defined by

∆vi,j = γi−1,j−1;i,j(vi−1,j−1 − vi,j) +
γi−1,j;i,j(vi−1,j − vi,j) +
γi−1,j+1;i,j(vi−1,j+1 − vi,j) +
γi,j−1;i,j(vi,j−1 − vi,j) +
γi,j+1;i,j(vi,j+1 − vi,j) + (2)

γi+1,j−1;i,j(vi+1,j−1 − vi,j) +
γi+1,j;i,j(vi+1,j − vi,j) +
γi+1,j+1;i,j(vi+1,j+1 − vi,j)

where

γi,j;p,q =
{

1, if element (i, j) is coupled to (p, q),
0, otherwise.

(3)

Without consider the coupling terms, eqn. (1) represents

a Wilson-Cowan neural oscillator, which has been widely

used in neural network modelling [18, 22]. It is a feed-

back loop between an excitatory unit (x) and an inhibitory

unit (y). Ii,j is an external stimulation received by oscil-

lator (i, j). If Ii,j is a constant, no chaos can appear since

it is a two-dimensional continuous flow. In order to get a

chaotic oscillator, the external stimulation is defined as a

periodic function: Ii,j(t) = Ai,jcos(t), where Ai,j is the

amplitude of external stimulation. In all simulations of this

paper, Ai,j is considered as a bifurcation parameter, which

receives gray level of an input pixel.

The segmentation strategy is described below. Consider-

ing a scene image containing several objects. The network

is organized that each element corresponds to a pixel of the

image and a proper parameter of each oscillator is chosen

to encode the gray level of the corresponding pixel. As the

system runs, the neurons self-organize according to a prede-

fined similarity criterion, such that the connections between

pairs of neighboring oscillators with similar gray level will

be maintained, while those connections between oscillators

of different gray level will be cut. Consequently, all neu-

rons belonging to the same segment (object) will be syn-

chronized to form a unique trajectory, then each object is

represented by a synchronized chaotic orbit. Following the

Figure 1. Bifurcation diagram of periodically
driven Wilson-Cowan oscillators by varying
parameter b. The stepsize ∆b = 0.0001

high sensitivity to initial conditions and the dense proper-

ties of chaos, all such synchronized chaotic trajectories will

be mutually different in time. In this way, objects in a given

scene can be segmented.

2.2. Network of Wilson-Cowan Oscillators as a Vi-
sual Selection System

The proposed model can be seen as an adaptation of the

model described above with a new major feature: a mech-

anism to select a salient object by increasing the firing fre-

quency of its corresponding oscillators, and by decreasing

the firing frequency of the oscillators corresponding to the

other objects. This feature satisfies the following essential

requirements of a Visual Selection system:

• considering as input one or a combination of features

(Saliency Map), the neural network must highlight (se-

lect) the region of the image where the focus of atten-

tion should be directed;

• all other locations of the visual input must be sup-

pressed by the system in order to keep the focus of

attention on just one of the active objects.

The spiking frequency of Wilson-Cowan oscillators can

be controlled by changing the parameter b in equation (1).

So, we first analyzed the bifurcation diagram of periodically

driven Wilson-Cowan oscillators by varying the parameter

b, as shown in Fig. 1. From this figure, we see that when

b ≤ 0.005 there is nearly no oscillation. As b increases

we see sessions of periodic windows and chaotic behavior.

When b is small the chaotic behavior is predominant, but as

b increases the periodic behavior becomes more frequent.
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Figure 2. Temporal activities of oscillators
with b = 0.01, 0.02, 0.034, 0.05 and 0.1 respec-
tively. Vertical scale of second to fifth oscil-
lators were shifted downwards by 0.5

In Fig. 2, we show the time series of a Wilson-Cowan

oscillator varying b. From this figure we can notice that as

b increases, the frequency of oscillation increases. When b
takes a higher value (for example, the case of b = 0.1 in

the figure), the oscillator not only fires more frequently, but

also shows periodic resembling behavior.

In our model, we take advantage of these oscillatory

changes to determine visual attention, which means that the

synchronized oscillators corresponding to the salient object

will present a periodic oscillation, while the oscillators cor-

responding to the other objects will become near silent.

In order to achieve this, we let the oscillators run with a

fixed b parameter until they synchronize and the segmenta-

tion task can be performed. After that, whenever any oscil-

lator fires, say oscillator (i, j), it will produce two types of

signals:

• a reinforcement signal to itself and all other oscillators

that fire in unison.

• an inhibitory signal to all oscillators that have different

activities to (i, j).

The reinformecement/inhibitory behavior is defined by

the following equation:

bp,q(τ) = bp,q(τ−1)+
α

M(τ)

∑
i,jε∆(τ)

f(||xi,j−xp,q||) (4)

bmin ≤ bp,q(τ) ≤ bmax (5)

where (p, q) is neuron’s index, τ is a time instant with at

least one firing oscillator, M(τ) is the number of oscillators

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

 x

 f(
x)

Figure 3. Illustration of f(x). a1 = −4 and
a2 = 1.

at the firing state in τ time, ∆(τ) is the set of oscillators at

the firing state in τ time, bmin and bmax are constant, ||x||
is the norm of x, and

f(x) = a1x + a2 (6)

as shows by the graphic in Fig. 3.

f(x) defines that each firing neuron, say neuron (i, j),
may send a positive or a negative signal to another neuron,

say (p, q), depending on the difference between them.

Each oscillator that receives a reinforcement signal will

increase the value of parameter b accordingly, while the os-

cillator receiving an inhibitory signal will decrease the value

of parameter b as well. The maximum value of b an oscil-

lator can hold is bmax, while the minimum value is bmin.

After some time, only the oscillators corresponding to the

salient object will keep firing, increasing their activation

frequency until they become periodic. The oscillators corre-

sponding to the non-salient objects will gradually decrease

their activation frequency, until they become silent. In our

model, this object which remains active is the one that holds

the focus of attention.

3. Computer Simulations

This section presents the simulation results performed on

synthetic images in order to check the viability of the pro-

posed model as a Selection Mechanism.

In all simulations of this paper, the following parameters

are held constant at: a = 1.0, c = 1.0, d = 0.6, e =
−2.5, f = 0.0, θx = 0.2, θy = 0.15, T = 0.025, bmin =
0.002, bmax = 0.1, α = 0.001 and the initial value of b is

0.02. Such a configuration can guarantee that initially each

oscillator is chaotic [22].

With these parameter values, we perform some experi-

ments with synthetic images. Ii,j is defined based only in

the intensity of the image pixels (grey level).

The first experiment was carried by using the artificial

image shown in Fig. 4, which has two twisted spirals with
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Figure 4. Artificial image with 2 linearly non-
separable spirals (25 × 25 pixels).
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Figure 5. Temporal activities of oscillator
blocks. Each trace in the figure (top-down)
corresponds to an object (1-2) in the input
pattern of Fig. 4. Vertical scale of the second
objects is shifted downwards by 0.5. Segmen-
tation and selection mechanism are activated.

2 different gray levels. It can be seen that the two spirals

are linearly nonseparable. The coupling strength k is set

to 20. Figure 5 shows the temporal activities of oscillator

groups in the case that both the segmentation and the at-

tention mechanisms are activated. It is possible to see that

the proposed model is able to perform the requirement de-

scribe above, where initially the two objects are correctly

segmented and after some running time, only one group of

oscillators representing a spiral continues spiking, which

means that the corresponding object is the one receiving

the focus of attention. The highlighted spiral is the one of

higher pixel intensity.

Our second experiment is performed by using the arti-

ficial image shown in Fig 6, which has 160 × 120 pixels

containing 5 objects of different gray levels. The coupling

Figure 6. Artificial image with 5 objects (160×
120 pixels)

strength we use here is k = 5. Figure 7 shows the tem-

poral activities of the oscillators corresponding to each ob-

ject with attention mechanism. Again, we see that the five

objects are correctly segmented. After some running time,

only one group of oscillators kept spiking, their temporal

activities are represented by the third trace in the figure,

which corresponds to the object in the middle of the image

(Fig. 6). And again, the highlighted object is the brightest

one.

In both experiments it is possible to observe that the fir-

ing frequency of non-highlighted objects decreases gradu-

ally until they become silent, while the firing frequency of

highlighted object increases gradually until it becomes pe-

riodic, as we expected.
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Figure 7. Temporal activities of oscillator
blocks. Each trace (top-down) in the figure
corresponds to an object (1-5) in the input
pattern of Fig. 6. Vertical scale of second
to fifth objects are shifted downwards by 0.5.
Segmentation and selection mechanism are
activated.
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4. Conclusions

This paper presents a Visual Selection Mechanism based

on a network composed of chaotic Wilson-Cowan oscilla-

tors. This mechanism can be seen as a part of a Visual At-

tention System, which is responsible for selecting one of

several regions of interest into the visual input image. The

proposed model utilize the properties of chaos and chaotic

synchronization to discriminate the objects that compose

the visual input and also included a inhibition mechanism

which is responsible for highlighting the most salient object

(in this work, the brightest one). Another interesting char-

acteristic of the proposed model is its change of behavior

when the object receives the focus of attention. In this case,

the former chaotic behavior gives place to a trajectory with

periodic behavior.

Computer simulations were performed in order check its

viability as a selection mechanism and the results show that

our model is a promising mechanism for computer vision

systems.

As a future work we intend to introduce more features

in our model, such as color, saturation, orientation, etc., in

order to test our model using real images and compare our

results with other models based on saliency maps. In addi-

tion, we will also verify the possibility of including some

biasing mechanism to emulate top-down factors based on

prior knowledge of the visual input, such as a memory hold-

ing a specific object.
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