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Abstract Identification and classification of overlap-
ping nodes in networks is an important topic in data
mining. In this paper, a network-based (graph-based)

semi-supervised learning method is proposed. It is based
on competition and cooperation among walking parti-
cles networks to uncover overlapping nodes by generat-

ing continuous-valued outputs (soft labels), correspond-
ing to the levels of membership from the nodes to each
of the communities. Moreover, the proposed method

can be applied to detect overlapping data items in a
data set of general form, such as a vector-based data
set, once it is transformed to a network. Usually, la-

bel propagation involves risks of error amplification. In
order to avoid this problem, the proposed method of-
fers a mechanism to identify outliers among the labeled

data items, and consequently prevents error propaga-
tion from such outliers. Computer simulations carried
out for synthetic and real-world data sets provide a nu-

meric quantification of the performance of the method.
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1 Introduction

Over the last decade there has been an increased in-

terest in network research, with the focus shifting away
from the analysis of single small graphs to considera-
tion of large-scale ones, called complex networks. Com-

plex network based machine learning and data mining
have triggered much attention. This is because such net-
works are ubiquitous in nature and everyday life. Many

data sets are already represented by networks, such
as the Internet, WWW, telecommunication networks,
transportation networks, biological networks and social

networks. Many other kinds of data sets can be trans-
formed to network representations. For example, a ta-
ble based relational data base can be transformed into a

network by simply connecting the k nearest neighbors of
each data point. One of the main motivations of graph
theory research is the ability to describe topological

structure of the original system. In machine learning do-
main, it has been shown that the topological structure
is quite useful to detecting various cluster (class) forms

by a data clustering (classification) algorithm with a
unique distance measure (Karypis et al 1999; Fortunato
2010).

One of the striking phenomena of complex networks
is the presence of communities. The notion of commu-
nities in networks is straightforward, each community

is defined as a subgraph whose nodes are densely con-
nected within itself but sparsely connected with the
rest of the network. Therefore, community detection

in networks has turned out to be an important topic in
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data mining (Newman and Girvan 2004; Newman 2006;

Duch and Arenas 2005; Reichardt and Bornholdt 2004;
Danon et al 2005). In graph theory, community detec-
tion corresponds to graph partition, which has been

shown to be a NP-complete problem (Fortunato 2010).
For this reason, a lot of efforts have been paid to de-
velop more efficient approximate solutions (See (Fortu-

nato 2010) and references there in).

In practice, there are common cases where some

nodes in a network can belong to two or more com-
munities at the same time. For example, in a social
network of friendship, individuals often belong to sev-

eral communities: their families, their colleagues, their
classmates, etc. These nodes are often called overlap-
ping nodes, and few community detection algorithms

can deal with this problem. Therefore, uncovering the
overlapping community structure of complex networks
is still an open problem (Zhang et al 2007a; Palla et al
2005; Zhang et al 2007b).

It is rare that we know nothing on a given data set.
On the contrary, in many real world data sets, we know

the labels of some elements. For example, one certainly
does not know the majority of the people from Brazil,
but we usually know some of them, such as Pelé, a fa-

mous soccer player, or Ayrton Senna, who was a famous
racing driver. These labeled data, without a doubt, help
to correctly determine the labels of the remaining ones.

For this reason, we consider fuzzy community structure
detection in a semi-supervised environment.

In this paper, we present a new community detec-
tion method, which uses competition and cooperation
among particles walking in the network. It is inspired

by the community detection method proposed by Quiles
et al (2008), in which only hard labels can be produced.
That model features walking particles in the network

competing with each other in order to possess as many
nodes as possible. Later, Breve et al (2011) extended
that model to perform semi-supervised learning includ-

ing not only competition among particles spreading dif-
ferent labels, but also cooperation among the parti-
cles which are spreading the same class label. How-

ever, it also provides only hard labels. Both Quiles et al
(2008) and Breve et al (2011) provide analysis on time
and storage complexity of these methods, showing that

they have lower order of computational complexity than
other unsupervised and semi-supervised graph based
methods. While most semi-supervised graph-based meth-

ods have cubic complexity order (O(n3)) (Zhu 2005),
the methods proposed by Quiles et al (2008) and Breve
et al (2011) have only linear complexity (O(n)), thus

they can be applied to larger data sets.

A preliminary work to determine overlapping nodes

by particle competition has been presented by Breve

et al (2009). In that work, partial knowledge of networks

is not taken into consideration, thus only the competi-
tion mechanism between particles is implemented. In
this paper, we extend that model to semi-supervised

learning case by introducing the cooperative mecha-
nism through the concept of teams of particles. Parti-
cles in the same team cooperate with their teammates

and compete against particles of other teams. We also
transform the unsupervised learning mechanism into a
semi-supervised learning mechanism, in order to take

advantage of a small portion of labeled samples that
usually are available in many real data sets. The pro-
posed model produces a fuzzy output (soft label) for

each node of the network. Such continuous-valued out-
put can be treated as the levels of membership of each
node to each community. Therefore, it is able to uncover

the overlapping community structure in networks.

Another problem faced by machine learning algo-

rithms is the presence of outliers or mislabeled samples
in the training data. In practical applications, semi-
supervised learning may entail risks because error prop-

agation may be embedded in normal label propagation.
For example, in a medical diagnostic system, a classifi-
cation mistake may have serious consequences to a per-

son’s health. In semi-supervised learning domain, this
situation gets worse because the classification mistake
may propagate to the sub-system or even the whole

system, resulting in wrong diagnosis of other cases. The
model proposed in this paper gives special consideration
to label propagation safety by introducing a mechanism

to identify outliers among the labeled data items, and
consequently prevent error propagation coming from
outliers.

It is worth noting that many graph-based semi-su-

pervised learning methods have been developed (Chapelle
et al 2006). However, most of them are similar to each
other (Zhu 2005) in such way that they can be seen

as regularization frameworks, differing only in the par-
ticular choice of the loss function and the regularizer
(Blum and Chawla 2001; Zhu et al 2003; Zhou et al

2004; Belkin et al 2004, 2005; Joachims 2003). More-
over, most of these methods spread the labels globally,
i.e., at each iteration, all nodes propagate their labels

to all other nodes accordingly to edges weights. The
method proposed in this paper is essentially different
from the others because the nature-inspired particle

movement, competition and cooperation mechanisms
allow it to spread the labels locally, at each algorithm
step, i.e., only those nodes which are being visited by a

particle are updated. Both the fuzzy output (overlap-
ping community structure detection) and the outlier
detection mechanisms are extracted naturally from the

particle dynamics.
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The rest of this paper is organized as follows: Section

2 describes the model in details. Section 3 shows some
experimental results from computer simulations, and in
Section 4 we draw some conclusions.

2 Model Description

In this section, we introduce the particle competition

and cooperation algorithm. It takes a undirected and
unweighed network as input. So, if the data set is al-
ready in that form, it can be used directly. Otherwise,

the input data set must be transformed into an undi-
rected and unweighed network. For each labeled data
item, a corresponding particle is generated and put in

the network. A group of particles having the same label
is called a team. Each node in the network possesses a
vector of elements, which corresponds to the domina-

tion level of each team of particles over that node. As
the system runs, each particle uses a random-greedy
rule to choose a neighbor to visit. In this chosen node,

there is an increase of the domination level of the par-
ticle team, while there is a decrease of the domination
levels of other teams. Teams of particles will act coop-

eratively trying to dominate as many nodes as possi-
ble while preventing intrusion of other teams. We keep
track of each node visits and, at the end of iterations, we

calculate the membership degrees of each node to each
class by using the information of domination levels.

The input of the algorithm is a graph G = (V,E),

where V = {v1, v2, . . . , vn} is the set of nodes and E is
the set of edges (vi, vj), which can also be represented
by an adjacency matrix W:

Wij =

{
1 if vi and vj are neighbors

0 otherwise
, (1)

so Wij specifies whether there is an edge between the
pair of nodes vi and vj . The algorithm also requires a

vector Y = {y1, y2, . . . , yn}, where yi takes the hard la-
bel of the node vi if it is known, or 0, otherwise. The
label set is defined as L = {1, 2, . . . , c}, where c is the

amount of classes/communities, so a number is assigned
to each class/community and 0 is reserved for nodes
which label is unknown. If a labeled node is known

to be an overlap node, its hard label is chosen after
the class/community that it has the higher pertinence
level. The goal of the algorithm is to provide a vector of

membership degrees to each class for each of the nodes
in the graph, no matter if they are initially labeled or
unlabeled.

If the input data set is not a undirected unweighed
network, it must be first transformed into one. For in-
stance, if the input data set is vector-based, as in χ =

{x1, x2, . . . , xn} ⊂ Rm, one may transform it into an

undirected and unweighed graph by transforming each

element xi into a node vi, and connecting it its k nearest
neighbors according to some distance measure, like the
Euclidean distance. In this case, the adjacency matrix

W may be build as follows:

Wij =


1 if xj is among the k-nearest neighbors

of xi or vice-versa
0 otherwise

.(2)

where Wij specifies whether there is an edge between

the pair of nodes xi and xj . Of course, one can also use
faster methods to estimate the nearest neighbors, spe-
cially in larger data sets where the prior graph construc-

tion may be more time consuming than the algorithm
iterations, as the algorithm has lower order of compu-
tational complexity than the prior graph construction

step.

For each labeled node vi (i.e., yi ̸= 0) in the net-
work, a particle ρi is generated and its initial position
is at the node vi. Thus, there is a particle for each la-

beled node in the network. If vi is the initial position
of particle ρi, we call it the home node of particle ρi.
At each iteration, each particle changes its position and

register the distance it is from its home node. Particles
generated for nodes with the same class/communities
labels form a team and cooperate with each other to

compete with other teams. So, each team represents a
class/community of the network.

Each particle ρj comes with two variables: ρωj (t) and
ρdj (t). The first variable ρωj (t) ∈ [0, 1] is the particle

strength, which indicates how much the particle can af-
fect a node levels at time t. The second variable is a
distance table, i.e., a vector ρdj (t) = {ρd1

i (t), ρd2
i (t), . . . ,

ρdn
i (t)}, where each element ρdi

j (t) ∈ [0, n− 1] corre-
sponds to the distance measured between the particle’s
home node vj and its current position.

Each node vi has two variables. The first variable is
a vector vω

i (t) = {vω1
i (t), vω2

i (t), . . . , vωc
i (t)} called in-

stantaneous domination levels, and each element vωℓ
i (t) ∈

[0, 1] corresponds to the level of domination of team ℓ

over node vi. At each node, the sum of the domination
levels is always constant, as follows:

c∑
ℓ=1

vωℓ
i = 1. (3)

This relation is possible because particles increase the
node domination level of their own team and, at the
same time, decreases the other teams’ domination lev-

els. The second variable is the long term domination
levels, which is a vector vλ

i (t) = {vλ1
i (t), vλ2

i (t), . . . ,
vλc
i (t)}, and each element vλℓ

i (t) ∈ [0 ∞] represents

long term domination level by team ℓ over node vi.
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Long term domination levels can vary from zero to in-

finity and they never decrease.
Each node vi has an initial value of its instantaneous

domination vector vω
i set as follows:

vωℓ
i (0) =


1
c if yi = 0

1 if yi = ℓ
0 otherwise

, (4)

i.e., for each unlabeled node (y = 0), the domination
levels of all particle teams are set to the same value 1

c ,

where c is the number of classes/communities (number
of teams); and for each labeled node (y ̸= 0), the dom-
ination level of the dominating team is set to the high-

est value 1, while the domination levels of other teams
are set to the lowest value 0. On the other hand, in all
nodes, all long term domination levels vλℓ

i (0) have their

initial values set to zero, for all the classes ℓ no matter
if the corresponding data item is labeled or unlabeled.

Each particle has its initial position set to the cor-

responding home node, and their initial strength is set
as follows:

ρωj (0) = 1, (5)

i.e., each particle starts with maximum strength.
Particles have limited knowledge of the network,

they only know the distances from their home node
to nodes that they already visited. Distances are recal-
culated dynamically at each particle movement. Thus,

the distance table of each particle is set as follows:

ρdi
j (t) =

{
0 if i = j

n− 1 if i ̸= j
, (6)

i.e., for each particle, the distance from its home node
is set to zero, and all the other distances are assumed

to be the largest possible value n− 1
At each iteration, each particle will select a neigh-

bor to visit. There are two different kinds of movements

a particle can use: random movement and greedy move-
ment. During random movement, a particle randomly
chooses any neighbor to visit without concerning dom-

ination levels or distance from its home node. This
movement is used for exploration and acquisition of
new nodes. Meanwhile, in greedy movement, each parti-

cle prefers visiting those nodes that have been already
dominated by its own team and that are closer to their
home nodes. This movement is used for defense of both

its own and its team’s territories. In order to achieve
an equilibrium between exploratory and defensive be-
havior both movements are applied. Therefore, at each

iteration, each particle has probability pgrd to choose
greedy movement and probability 1 − pgrd to choose
random movement, with 0 ≤ pgrd ≤ 1. Once the ran-

dom movement or greedy movement is determined, the

target neighbor node ρτj (t) will be chosen with proba-

bilities defined by Eq. (7) or Eq. (8), respectively.

In random walk the particle ρj tries to move to any
node vi with the probabilities defined as:

p(vi|ρj) =
Wqi∑n

µ=1 Wqµ
, (7)

where q is the index of the current node of particle ρj ,

so Wqi = 1 if there is an edge between the current node
and any node vi, and Wqi = 0 otherwise.

In greedy movement the particle tries to move to
a neighbor with probabilities defined according to its

team domination level on that neighbor ρωℓ
j and the

inverse of the distance (ρdi
j ) from that neighbor vi to

its home node vj as follows:

p(vi|ρj) =
Wqiv

ωℓ
i (ρdi

j + 1)−2∑n
µ=1 Wqµv

ωℓ
µ (ρ

dµ

j + 1)−2
. (8)

Once more, q is the index of the current node of particle
ρj and ℓ = ρfj , where ρ

f
j is the class label of particle ρj .

Particles of different teams compete for owning the
network nodes, when a particle moves to another node,

it increases the instantaneous domination level of its
team in that node, at the same time it decreases the
instantaneous domination level of the other teams in

that same node. The exception are the labeled nodes,
which instantaneous domination levels are fixed. Thus,
for each selected target node vi, the instantaneous dom-

ination level vωℓ
i (t) is updated as follows:

vωℓ
i (t+ 1) =



max{0, vωℓ
i (t)− ∆vρ

ω
j (t)

c−1 }
if yi = 0 and ℓ ̸= ρfj

vωℓ
i (t) +

∑
q ̸=ℓ v

ωq

i (t)− v
ωq

i (t+ 1)

if yi = 0 and ℓ = ρfj
vωℓ
i (t) if yi ̸= 0

, (9)

where 0 < ∆v ≤ 1 is a parameter to control changing
rate of the instantaneous domination levels and ρfj rep-

resents the class label of particle ρj . If ∆v takes a low
value, the node instantaneous domination levels change
slowly, while if it takes a high value, the node domina-

tion levels change quickly. Each particle ρj increases the

instantaneous domination level of its team (vωℓ
i , ℓ = ρfj )

at the node vi when it moves to it, while it decreases
the instantaneous domination levels of this same node
of other teams (vωℓ

i , ℓ ̸= ρfj ), always respecting the

conservation law defined by Eq. (3). The instantaneous
domination level of all labeled node vωi are always fixed,
as defined by the third case expressed by Eq. (9).

Regarding long term domination levels, at each it-

eration, for each selected node vi in random movement,
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the long term domination level vλℓ
i (t) is updated as fol-

lows::

vλℓ
i (t+ 1) = vλℓ

i (t) + ρωj (t) (10)

where ℓ is the class label of particle ρj . Eq. (10) shows
that the updating of the long term domination levels

vλℓ
i (t+1) is proportional to the current particle strength
ρωj (t). This is a desirable feature because the particle
probably has a higher strength when it is arriving from

its own neighborhood, while it has a lower strength
when it is arriving from nodes from other teams neigh-
borhoods. When greedy movement is selected, long term

domination levels are not updated, otherwise a team
domination would be amplified by greedy movement
visits, which is not desirable as it would introduce bias

in the fuzzy output.
Regarding particles strength, they get stronger when

they move to a node being dominated by its own team

and they get weaker when they move to a node domi-
nated by other teams. Thus, at each iteration t, a par-
ticle strength ρωj (t) is updated as follows:

ρωj (t+ 1) = vωℓ
i (t+ 1), (11)

where vi is the target node, and ℓ = ρfj , i.e., ℓ is the

class label of particle ρj . Therefore, each particle ρj has
its strength ρωj set to the value of its team instantaneous
domination level v

ωj

i of the node vi.

It is important to notice that when a particle moves,
it may be accepted or rejected in the target node due to
the competition mechanism. First, a particle modifies

both the node instantaneous and long term domination
levels as explained, then it updates its own strength,
and finally it will be accepted in the new node only if

the domination level of its team is higher than others;
otherwise, a shock happens and the particle goes back
to the last node until next iteration.

The distance table purpose is to keep the particle
aware of how far it is from its home node. This in-
formation is used in the greedy movement in order to

keep the particle around its own neighborhood most
of the time, avoiding letting it susceptible to be at-
tacked by other teams. The instantaneous domination

levels together with the distance information also avoid
situations where a particle would walk into enemies’
neighborhoods and lose all its strength. Each particle

ρj updates its distance table ρdk
j (t) at each iteration t

as follows:

ρdk
j (t+ 1) =

{
ρdi
j (t) + 1 if ρdi

j (t) + 1 < ρdk
j (t)

ρdk
j (t) otherwise

, (12)

where ρdi
j (t) and ρdk

j (t) are the distances to its home
node from the current node and the target node, re-

spectively.

The distance calculation works as follows: we as-

sume that the particles initially have limited knowledge
of the network, i.e., they know how many nodes in the
network, but they do not know how the nodes are con-

nected, so they assume all the nodes can be reached
in at most n − 1 steps (the largest possible distance).
Every time a particle moves, it checks the current dis-

tance table. If the target node distance is higher than
the current node distance, the target node distance is
updated to the distance of the current node plus 1. This

method has advantage to use already known distances
without recalculation.

In a first glance, the nodes’ instantaneous domina-
tion levels vω

i (t) looks like a natural choice for nodes’
fuzzy (gradual) outputs, since they indicate the domi-

nation levels from each team (class) to each node quan-
tified in terms of continuous values in [0, 1]. However,
instantaneous domination levels are very volatile under

certain conditions. For instance, the dominating team
of a non-overlapping node after the last iteration usu-
ally owns the node for all or majority of iterations, but

this may not happen to overlapping nodes, in which
the dominating team changes frequently, and thus the
instantaneous domination level of the last dominating

team may not correspond to the team which have dom-
inated that node for longer time. Also, due to the com-
petition effect, the instantaneous domination level of

the dominating team is largely amplified and it does
not correspond to the real overlapping level. And that
is why we have the long term domination levels, which

represents temporal averaged domination level for each
team at each node. In this case, when a team’s long
term domination level is increased, long term domina-

tion levels of other teams are kept without changes.
Also, there is no upper limit on long term domination
levels, i.e., they can vary from zero to infinity. At the

end of iterations, the fuzzy output is derived from the
long term domination levels. It is important to note that
the long term domination levels are adjusted only when

a particle selects the random movement, because, like
the competition effect, the greedy movement amplifies
visiting advantage of dominating particle.

After the last iteration, the degrees of membership

f ℓ
i ∈ [0 1] corresponding to each node vi are calculated
using the long term domination levels, as follows:

f ℓ
i =

vλℓ
i (∞)∑c

q=1 v
λq

i (∞)
(13)

where f ℓ
i represents the final membership level from the

node vi to community ℓ.

Based on the membership degrees (fuzzy output),

we have formed an overlapping measure in order to
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easily illustrate the application of the algorithm. There-

fore, the overlapping index oi for a node vi is defined
as follow:

oi =
f ℓ∗∗
i

f ℓ∗
i

(14)

where ℓ∗ = argmaxℓ f
ℓ
i , ℓ ∗ ∗ = argmaxℓ,ℓ ̸=ℓ∗ f

ℓ
i , and

oi ∈ [0 1], where oi = 0 means completely confidence
that the node belongs to a single community, while oi =

1 means the node is completely undefined being shared
among two or more communities.

If needed, hard labels may be easily obtained through

the following equation:

yi = argmax
ℓ

f ℓ
i , (15)

i.e., the node is hard labeled after the class with the
highest membership level. These hard labels may be

very different from those obtained from instantaneous
domination levels, like in (Breve et al 2011). They are
usually more accurate to classify outliers and nodes

around outliers. They may also be used to accurately
reclassify wrongly labeled nodes, as instantaneous dom-
ination levels are always fixed and, therefore, cannot be

used to this purpose.

Overall, the proposed algorithm can be outlined as
follows:

Algorithm 1: Particle Competition and Cooper-

ation
1 Set nodes’ domination levels by using Eq. (4);
2 Set initial positions of particles at their corresponding

home nodes by using Eq. (5);
3 Set particle strength and distance tables by using Eq.

(6);
4 for a pre-determined amount of iterations do
5 for each particle do
6 Select between random or greedy rule with

probability defined by pgrd;
7 Select the target node by using Eq. (7) or Eq.

(8) for random or greedy movement
respectively;

8 Update target node instantaneous domination
levels by using Eq. (9);

9 Update target node long term domination
levels by using Eq. (10);

10 Update particle strength by using Eq. (11);
11 Update particle distance tables by using Eq.

(12);

12 Calculate the membership levels for each data item
using Eq. (13);

13 Calculate the overlapping index for each data item
using Eq. (14);

14 If needed, assign a hard label to each data item using
Eq. (15);

3 Computer Simulations

In this section, we present some simulation results to
evaluate the effectiveness of the proposed method. First,
the proposed algorithm is applied to artificial data sets

with increasing amount of overlapped nodes. Then, the
robustness to incorrectly labeled nodes is demonstrated,
including the reclassification of these nodes. Next, the

proposed algorithm is applied to some real-world data
sets, including both network-based and vector-based
data sets. Finally, the algorithm is evaluated with the

benchmark for undirected and unweighted networks with
overlapping communities proposed by Lancichinetti and
Fortunato (2009a) (LFR benchmark), in order to make

it easier to compare it to other methods.

For all vector-based data sets, the networks are built
by using Eq. (2), with the parameter k being empir-
ically set for each problem, i.e., a set of simulations

is executed by varying k in the interval [0.01n 0.1n],
and the value leading to the best results is chosen. The
Euclidean distance is used in all cases. The algorithm

parameters are also empirically set to ∆v = 0.1 and
pgrd = 0.5 for all the experiments. All results shown in
this section are the average of 50 to 1, 000 executions.

Figures 1a, 1b, and 1c show the results of the pro-
posed method applied to three banana-shaped classes
generated using PRTools (Duin et al 2007) function

gendatb with 1, 000 elements each (500 per class) and
different variance parameter s = {0.6, 0.8, 1.0}. For
each data set, 50 elements (5%) were randomly selected

as the labeled ones. The size of the nodes in the plot
are proportional to their respective overlapping index.
We see that there are more overlapping nodes and the

overlapping levels are higher as the classes get more
mixed. This situation matches well the results we obtain
through a direct visual inspection. These experiments

are repeated 100 times. The mean standard deviation of
the membership levels are 0.0216, 0.0222, and 0.0598,
for Figures 1a, 1b, and 1c, respectively. After assign-

ing the hard labels, the average correct classification
rates are 0.9945, 0.9923 and 0.9607, respectively; and
the standard deviations are 0.0108, 0.0140, and 0.0164,

respectively.

Figure 2a shows a data set with 4 classes with Gaus-
sian distribution, generated by using PRTools (Duin
et al 2007) function gendats with 1, 000 elements (250

per class) and 20 samples are labeled (5 per class), rep-
resented by the squares, triangles, lozenges and stars.
The algorithm is applied to the data set and the de-

tected overlapping indexes are shown in Fig. 2b. We see
that the nodes in the interior of each class are small, i.e.,
they are clearly non-overlapping nodes. Meanwhile, the

nodes in the borders among classes have larger sizes,
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Fig. 1: Fuzzy classification of two banana-shaped classes

generated with different variance parameters: (a) s =
0.6 (b) s = 0.8 (c) s = 1.0. Nodes size and colors repre-
sent their respective overlapping index detected by the

proposed method.
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Fig. 2: Classification of normally distributed classes
(Gaussian distribution). (a) toy data set with 1, 000

samples divided in four classes, 20 samples are la-
beled, 5 from each class (squares, triangles, lozenges and
stars). (b) nodes size represent their respective overlap-

ping index detected by the proposed method.

which represent their different levels of overlapping.

These results are in agreement with our intuition. These
experiments are repeated 100 times and the mean stan-
dard deviation of the membership levels is only 0.0037.

For the hard labels, the average correct classification
rate is 0.9546 and the standard deviation is 0.0012.

Referring to Fig. 2a, we note that there is an upper

triangle in the space of the square class, it is clearly
an outlier. However, it does not mix up the overlap-
ping indexes of the nodes around it. It means that a

particle which home node is an outlier has difficulty to
defend its neighborhood, since it may be far from its
team-mates and receives few or no help from them. A

particle whose home node is an outlier can eventually
abandon its home, if its neighborhood is dominated by
another team. In this case, it may migrate to the neigh-

borhood of one of its nearby team-mates. Although an
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outlier can eventually change a little bit of the instan-

taneous domination levels (vωi (t)) of its neighbors, it
has very weak effect to the long term domination levels
(vλi (t)) of these same neighbors. Thus, we can achieve

good classification results even though the data sets
have some outliers. Notice that the instantaneous dom-
ination levels are fixed for labeled nodes, but the long

term domination levels are not. Thus, through the long
term domination levels, a labeled node can be reclassi-
fied if it is an outlier using Eq. (15).

In order to show these features, we perform simula-
tions on an artificial data set presented by Fig. 3a, it

has 2, 000 elements distributed into two banana-shaped
classes (1, 000 elements per class), 100 (5%) of them
are labeled (circles and squares), however, 10 of these

labeled nodes have the wrong label representing out-
liers. Figure 3b shows the classification by the proposed
method. The hard labels are obtained through Eq. (15),

i.e, the sample is simply classified to the class with the
highest membership level. We can see that the wrongly
labeled nodes do not affect the classification of their

neighbors and the outliers themselves are eventually
reclassified to their respective proper classes. These ex-
periments are repeated 100 times, the average correct

classification rate is 0.9975 and the standard deviation
is only 0.0001.

Next, the proposed algorithm is applied to a network-
based real-world data set: the Zachary’s Karate Club
Network (Zachary 1977), which is already an undirected

and unweighed network, so the prior graph construction
step is not needed. The data set is presented to the al-
gorithm with only two labeled nodes: 1 and 34, each one

representing a different class. The results are shown in
Fig. 4, and the overlapping index of each node is indi-
cated by their sizes. Our visual inspection indicates that

this is a good result as well. Notice that although the
two labeled nodes exhibit some degree of overlapping,
the algorithm still produced a good result, even detect-

ing these overlapping degrees in the labeled nodes (no-
tice the slightly larger size). This is also a desirable fea-
ture, since we do not need to choose a non-overlapping

node to represent a class. The three most overlapping
nodes detected by the proposed algorithm are nodes 9,
3, and 20, which matches the results obtained by Zhang

et al (2007b). Notice that these results are the mean of
1000 executions, and the standard deviation of the con-
tinuous output is only 0.003, i.e., the method output is

pretty consistent. By applying Eq. (15), the hard labels
are obtained and the algorithm achieves a perfect clas-
sification score (100% correct classification rate of the

34 nodes) in all the 1000 repetitions.

As the next step, the proposed method is applied to

two vector-based real-world data sets from the UCI Ma-
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Fig. 3: Classification of data sets with some outliers: (a)
artificial data set with some wrongly labeled nodes (b)
classification by the proposed method
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represent their respective overlapping index detected by

the proposed method.
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chine Learning Repository (Frank and Asuncion 2010):

the Iris Data Set and the Wine Data Set. The Iris Data
Set has 150 samples of 3 different types of Iris flower:
Iris Setosa, Iris Versicolour and Iris Virginica. The first

class (Iris Setosa) is quite different from the other two;
while the latter are more similar and hard to separate
from each other. There are 50 samples in each class and

4 real-valued attributes for each sample. The network is
built from the data using (2) with k = 5, which was em-
pirically set. We randomly select 10% of the samples to

be presented to the algorithm with their respective la-
bels, while the remaining are presented unlabeled. The
degrees of membership from each sample to each class

obtained by the proposed algorithm are presented in
Table 1. A graph representation is showed in Fig. 5, in
which the overlapping index of each node is indicated

by their sizes. Notice that the linearly separable class
becomes a disconnected subset of the graph nodes, and
the membership degrees of these samples are complete
to the respective class and zero for the others, as ex-

pected for clearly non-overlapping nodes. The other two
classes are not linearly separable as they have some de-
gree of overlapping. The different overlapping degrees of

all these nodes and their respective pertinence to each
of the classes are detected by the proposed algorithm.
These experiments are repeated 1, 000 times and the

mean standard deviation of the membership levels is
0.0803. Regarding the hard labels, the average correct
classification rate is 0.9375 and the standard deviation

is 0.0458.

The Wine Data Set has 178 samples of 3 differ-
ent types of Wine. There are 59, 71 and 48 samples
in classes 1, 2, and 3, respectively. Each sample has

13 integer and real-valued attributes. The network is
also built from the data using (2) with k = 5. Once
more, we randomly select 10% of the samples to be

presented to the algorithm with their respective labels,
while the remaining are presented unlabeled. The de-
grees of membership from each sample to each class

obtained by the proposed algorithm are presented in
Table 2; and a graph representation is showed in Fig. 6,
in which the overlapping index of each node is indicated

by their sizes. By analyzing the results, we can notice
that there are some overlapping nodes between classes
1 and 2; and some more between classes 2 and 3. On

the other hand, classes 1 and 3 are almost completely
separated. These experiments are repeated 1, 000 times
and the mean standard deviation of the membership

levels is 0.0794. Regarding the hard labels, the average
correct classification rate is 0.9326 and the standard
deviation is 0.0364.

Finally, the proposed method is evaluated with the

benchmark for undirected and unweighted networks with

Table 1: Degrees of membership from each sample to
each class obtained by the proposed method for the Iris
Data Set.

Inst. I. Set I. Vers. I. Virg. Inst. I. Set I. Vers. I. Virg. Inst. I. Set I. Vers. I. Virg.

1 1,0000 0,0000 0,0000 51 0,0000 0,9252 0,0748 101 0,0000 0,0084 0,9916

2 1,0000 0,0000 0,0000 52 0,0000 0,9245 0,0755 102 0,0000 0,2505 0,7495

3 1,0000 0,0000 0,0000 53 0,0000 0,8756 0,1244 103 0,0000 0,0072 0,9928

4 1,0000 0,0000 0,0000 54 0,0000 0,9688 0,0312 104 0,0000 0,0275 0,9725

5 1,0000 0,0000 0,0000 55 0,0000 0,9251 0,0749 105 0,0000 0,0111 0,9889

6 1,0000 0,0000 0,0000 56 0,0000 0,9569 0,0431 106 0,0000 0,0071 0,9929

7 1,0000 0,0000 0,0000 57 0,0000 0,7678 0,2322 107 0,0000 0,9384 0,0616

8 1,0000 0,0000 0,0000 58 0,0000 0,9769 0,0231 108 0,0000 0,0071 0,9929

9 1,0000 0,0000 0,0000 59 0,0000 0,9291 0,0709 109 0,0000 0,0243 0,9757

10 1,0000 0,0000 0,0000 60 0,0000 0,9492 0,0508 110 0,0000 0,0072 0,9928

11 1,0000 0,0000 0,0000 61 0,0000 0,9769 0,0231 111 0,0000 0,1042 0,8958

12 1,0000 0,0000 0,0000 62 0,0000 0,9784 0,0216 112 0,0000 0,0450 0,9550

13 1,0000 0,0000 0,0000 63 0,0000 0,9847 0,0153 113 0,0000 0,0118 0,9882

14 1,0000 0,0000 0,0000 64 0,0000 0,8696 0,1304 114 0,0000 0,2545 0,7455

15 1,0000 0,0000 0,0000 65 0,0000 0,9919 0,0081 115 0,0000 0,2492 0,7508

16 1,0000 0,0000 0,0000 66 0,0000 0,9300 0,0700 116 0,0000 0,0293 0,9707

17 1,0000 0,0000 0,0000 67 0,0000 0,9466 0,0534 117 0,0000 0,0298 0,9702

18 1,0000 0,0000 0,0000 68 0,0000 0,9924 0,0076 118 0,0000 0,0071 0,9929

19 1,0000 0,0000 0,0000 69 0,0000 0,7237 0,2763 119 0,0000 0,0071 0,9929

20 1,0000 0,0000 0,0000 70 0,0000 0,9792 0,0208 120 0,0000 0,3700 0,6300

21 1,0000 0,0000 0,0000 71 0,0000 0,5359 0,4641 121 0,0000 0,0078 0,9922

22 1,0000 0,0000 0,0000 72 0,0000 0,9924 0,0076 122 0,0000 0,2488 0,7512

23 1,0000 0,0000 0,0000 73 0,0000 0,4285 0,5715 123 0,0000 0,0071 0,9929

24 1,0000 0,0000 0,0000 74 0,0000 0,9488 0,0512 124 0,0000 0,2812 0,7188

25 1,0000 0,0000 0,0000 75 0,0000 0,9431 0,0569 125 0,0000 0,0104 0,9896

26 1,0000 0,0000 0,0000 76 0,0000 0,9318 0,0682 126 0,0000 0,0071 0,9929

27 1,0000 0,0000 0,0000 77 0,0000 0,8878 0,1122 127 0,0000 0,2847 0,7153

28 1,0000 0,0000 0,0000 78 0,0000 0,5506 0,4494 128 0,0000 0,3837 0,6163

29 1,0000 0,0000 0,0000 79 0,0000 0,9593 0,0407 129 0,0000 0,0220 0,9780

30 1,0000 0,0000 0,0000 80 0,0000 0,9862 0,0138 130 0,0000 0,0072 0,9928

31 1,0000 0,0000 0,0000 81 0,0000 0,9731 0,0269 131 0,0000 0,0071 0,9929

32 1,0000 0,0000 0,0000 82 0,0000 0,9752 0,0248 132 0,0000 0,0071 0,9929

33 1,0000 0,0000 0,0000 83 0,0000 0,9937 0,0063 133 0,0000 0,0184 0,9816

34 1,0000 0,0000 0,0000 84 0,0000 0,2363 0,7637 134 0,0000 0,2480 0,7520

35 1,0000 0,0000 0,0000 85 0,0000 0,9469 0,0531 135 0,0000 0,1000 0,9000

36 1,0000 0,0000 0,0000 86 0,0000 0,8618 0,1382 136 0,0000 0,0071 0,9929

37 1,0000 0,0000 0,0000 87 0,0000 0,9015 0,0985 137 0,0000 0,0160 0,9840

38 1,0000 0,0000 0,0000 88 0,0000 0,8396 0,1604 138 0,0000 0,0294 0,9706

39 1,0000 0,0000 0,0000 89 0,0000 0,9782 0,0218 139 0,0000 0,4552 0,5448

40 1,0000 0,0000 0,0000 90 0,0000 0,9541 0,0459 140 0,0000 0,0148 0,9852

41 1,0000 0,0000 0,0000 91 0,0000 0,9496 0,0504 141 0,0000 0,0084 0,9916

42 1,0000 0,0000 0,0000 92 0,0000 0,9450 0,0550 142 0,0000 0,0246 0,9754

43 1,0000 0,0000 0,0000 93 0,0000 0,9861 0,0139 143 0,0000 0,2506 0,7494

44 1,0000 0,0000 0,0000 94 0,0000 0,9769 0,0231 144 0,0000 0,0075 0,9925

45 1,0000 0,0000 0,0000 95 0,0000 0,9675 0,0325 145 0,0000 0,0080 0,9920

46 1,0000 0,0000 0,0000 96 0,0000 0,9856 0,0144 146 0,0000 0,0254 0,9746

47 1,0000 0,0000 0,0000 97 0,0000 0,9654 0,0346 147 0,0000 0,2266 0,7734

48 1,0000 0,0000 0,0000 98 0,0000 0,9725 0,0275 148 0,0000 0,0857 0,9143

49 1,0000 0,0000 0,0000 99 0,0000 0,9788 0,0212 149 0,0000 0,0257 0,9743

50 1,0000 0,0000 0,0000 100 0,0000 0,9853 0,0147 150 0,0000 0,2961 0,7039

overlapping communities proposed by Lancichinetti and

Fortunato (2009a) (LFR benchmark). This benchmark
uses the normalized mutual information between the
planted and the recovered partition, in its generalized

form for overlapping communities proposed by Lanci-
chinetti et al (2009), as the performance measure. The
benchmark method does not use the overlap degrees,

only hard labels. Therefore, we adapted the proposed
method to produce one single hard label using Eq. (15)
when the overlap index is low (oi ≤ 0.5), and two hard

labels when the overlap index is high (oi > 0.5). In this
last case, the first hard label is given by Eq. (15), and
the second hard label (y∗∗i ) is given by:

y∗∗i = arg max
ℓ,ℓ ̸=yi

f ℓ
i , (16)

i.e., the node second hard label is assigned after the
team with the second largest domination level on that
node. In all cases, 10% of the nodes are randomly chosen

to be presented to the algorithm with their respective
label.

The proposed method benchmark output is shown

in Figures 7 and 8. Each data point in these figures
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Fig. 5: The Iris Data Set. Nodes size and colors represent their respective overlapping index detected by the
proposed method.
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Fig. 6: The Wine Data Set. Nodes size and colors represent their respective overlapping index detected by the

proposed method.
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Table 2: Degrees of membership from each sample to
each class obtained by the proposed method for the
Wine Data Set.

Inst. Class 1 Class 2 Class 3 Inst. Class 1 Class 2 Class 3 Inst. Class 1 Class 2 Class 3

1 0,9519 0,0480 0,0002 61 0,0007 0,7603 0,2390 121 0,0103 0,9886 0,0011

2 0,9656 0,0344 0,0000 62 0,0007 0,6056 0,3937 122 0,3327 0,6665 0,0008

3 0,9918 0,0082 0,0000 63 0,0928 0,8615 0,0457 123 0,0188 0,9800 0,0012

4 0,9951 0,0049 0,0000 64 0,0907 0,9075 0,0018 124 0,3004 0,6992 0,0003

5 0,8581 0,1418 0,0000 65 0,0008 0,9466 0,0525 125 0,0288 0,9706 0,0006

6 0,9969 0,0030 0,0001 66 0,2946 0,7048 0,0007 126 0,0017 0,9974 0,0009

7 0,9922 0,0078 0,0000 67 0,0212 0,9770 0,0019 127 0,0024 0,9964 0,0012

8 0,9866 0,0129 0,0005 68 0,0009 0,9983 0,0008 128 0,0161 0,9802 0,0037

9 0,9944 0,0056 0,0000 69 0,0008 0,5794 0,4198 129 0,0009 0,9971 0,0020

10 0,9937 0,0063 0,0000 70 0,4067 0,5930 0,0003 130 0,0138 0,9002 0,0861

11 0,9976 0,0024 0,0000 71 0,0006 0,6912 0,3082 131 0,0010 0,3101 0,6889

12 0,9720 0,0280 0,0000 72 0,5857 0,4135 0,0008 132 0,0010 0,1112 0,8878

13 0,9847 0,0153 0,0000 73 0,0008 0,9973 0,0018 133 0,0008 0,0904 0,9088

14 0,9970 0,0030 0,0000 74 0,9584 0,0416 0,0000 134 0,0010 0,2033 0,7957

15 0,9977 0,0023 0,0000 75 0,1593 0,8391 0,0015 135 0,0005 0,4696 0,5299

16 0,9900 0,0095 0,0006 76 0,0010 0,9206 0,0785 136 0,0005 0,2124 0,7870

17 0,9921 0,0073 0,0006 77 0,0044 0,9932 0,0024 137 0,0004 0,0608 0,9388

18 0,9752 0,0244 0,0004 78 0,0008 0,6035 0,3957 138 0,0000 0,0689 0,9311

19 0,9969 0,0029 0,0002 79 0,6053 0,3946 0,0000 139 0,0003 0,1273 0,8724

20 0,9648 0,0352 0,0000 80 0,1655 0,8342 0,0003 140 0,0000 0,0849 0,9151

21 0,8798 0,1202 0,0000 81 0,0020 0,9974 0,0006 141 0,0002 0,1748 0,8251

22 0,7910 0,2090 0,0000 82 0,2093 0,7899 0,0008 142 0,0006 0,0761 0,9233

23 0,9694 0,0306 0,0000 83 0,0007 0,9942 0,0051 143 0,0002 0,0968 0,9030

24 0,7613 0,2383 0,0004 84 0,0001 0,3549 0,6451 144 0,0001 0,0823 0,9176

25 0,9177 0,0822 0,0001 85 0,0274 0,9719 0,0007 145 0,0002 0,0332 0,9667

26 0,8603 0,1395 0,0002 86 0,0058 0,9927 0,0015 146 0,0005 0,1752 0,8243

27 0,9745 0,0255 0,0000 87 0,0007 0,9931 0,0062 147 0,0000 0,0433 0,9567

28 0,9516 0,0484 0,0000 88 0,0006 0,9944 0,0049 148 0,0000 0,0156 0,9844

29 0,9208 0,0792 0,0001 89 0,0005 0,9859 0,0135 149 0,0000 0,0050 0,9950

30 0,9885 0,0115 0,0000 90 0,0007 0,9968 0,0025 150 0,0000 0,0046 0,9954

31 0,9811 0,0188 0,0002 91 0,0005 0,9702 0,0293 151 0,0000 0,0038 0,9962

32 0,9950 0,0050 0,0000 92 0,0005 0,9701 0,0294 152 0,0000 0,0038 0,9962

33 0,8139 0,1861 0,0000 93 0,0004 0,9253 0,0743 153 0,0001 0,0166 0,9833

34 0,9824 0,0169 0,0007 94 0,0087 0,9906 0,0007 154 0,0000 0,0038 0,9962

35 0,9592 0,0406 0,0002 95 0,0111 0,9877 0,0012 155 0,0004 0,1057 0,8939

36 0,9258 0,0742 0,0000 96 0,7751 0,2249 0,0000 156 0,0000 0,0137 0,9863

37 0,9625 0,0375 0,0000 97 0,0010 0,5963 0,4028 157 0,0000 0,0043 0,9957

38 0,8767 0,1233 0,0000 98 0,0125 0,9863 0,0012 158 0,0000 0,0321 0,9679

39 0,6611 0,3384 0,0005 99 0,1788 0,8194 0,0018 159 0,0000 0,0035 0,9965

40 0,9801 0,0199 0,0000 100 0,0195 0,9797 0,0008 160 0,0000 0,0035 0,9965

41 0,9626 0,0374 0,0000 101 0,0337 0,9645 0,0017 161 0,0000 0,0035 0,9965

42 0,6785 0,3214 0,0000 102 0,0008 0,9788 0,0204 162 0,0002 0,1577 0,8420

43 0,9917 0,0083 0,0000 103 0,0048 0,9943 0,0010 163 0,0000 0,1638 0,8362

44 0,8045 0,1955 0,0000 104 0,0009 0,9981 0,0009 164 0,0008 0,1396 0,8596

45 0,7310 0,2686 0,0005 105 0,0031 0,9966 0,0004 165 0,0001 0,0100 0,9899

46 0,9461 0,0537 0,0002 106 0,0002 0,9924 0,0074 166 0,0000 0,0519 0,9481

47 0,9904 0,0096 0,0000 107 0,0031 0,9960 0,0009 167 0,0000 0,0036 0,9964

48 0,9813 0,0187 0,0000 108 0,0003 0,9128 0,0869 168 0,0000 0,0041 0,9959

49 0,9885 0,0114 0,0001 109 0,0024 0,9974 0,0002 169 0,0000 0,0035 0,9965

50 0,9975 0,0025 0,0000 110 0,0357 0,9634 0,0010 170 0,0000 0,0038 0,9962

51 0,9949 0,0051 0,0000 111 0,1555 0,8442 0,0003 171 0,0008 0,1383 0,8610

52 0,9942 0,0058 0,0000 112 0,0021 0,9970 0,0008 172 0,0002 0,0222 0,9776

53 0,9946 0,0054 0,0000 113 0,0004 0,6633 0,3364 173 0,0000 0,0034 0,9966

54 0,9928 0,0065 0,0007 114 0,0108 0,9846 0,0046 174 0,0000 0,0217 0,9783

55 0,9758 0,0241 0,0001 115 0,0009 0,9970 0,0022 175 0,0000 0,0099 0,9901

56 0,9551 0,0449 0,0000 116 0,0017 0,9954 0,0029 176 0,0000 0,0046 0,9954

57 0,9794 0,0206 0,0000 117 0,0008 0,9987 0,0004 177 0,0001 0,0075 0,9924

58 0,9844 0,0154 0,0002 118 0,0247 0,9243 0,0510 178 0,0000 0,0039 0,9961

59 0,9967 0,0033 0,0000 119 0,0006 0,0818 0,9176

60 0,0016 0,9955 0,0029 120 0,0136 0,9862 0,0002

is obtained by an average of 50 executions with dif-
ferent generated networks. The vertical bars indicate

the standard deviation. These figures makes it easier
to compare the proposed method benchmark perfor-
mance with those obtained by Lancichinetti and For-

tunato (2009a,b) for the Cfinder method, proposed by
Palla et al (2005), as we generate the test networks us-
ing exactly the same parameters they have used. The

proposed method performed better than Cfinder when
the communities are larger (Figures 7c, 7d, 8c, and 8d).

4 Conclusions

This paper presents a new semi-supervised learning graph-
based method for uncovering the network overlapping

community structure. The method combines coopera-

tion and competition among particles in order to gen-

erate a fuzzy output (soft label) for each node in the
network. The fuzzy output correspond to the levels of
membership of the nodes to each class. An overlapping

measure is derived from these fuzzy output, and it can
be considered as a confidence level on the output label.
This mechanism has been used to determine outliers in

data sets too. The fuzzy output and outlier detection
realized by our algorithm provide mechanisms to help
stopping error propagation during the semi-supervised

learning process, thus avoiding label propagation risk
at certain level. It is also able to reclassify incorrectly
labeled data items.

Computer simulations were performed with both

synthetic and real-world data sets, including vector-
based data-sets, network-based data sets, and an evalu-
ation with the LFR benchmark. Their results show that

the proposed model is a promising method for classifi-
cation of data sets with overlapping structure and/or
a considerable amount of outliers, as well as detecting

and quantifying an overlapping measure for each node
in the network.
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Fig. 7: Test of the proposed method on the benchmark for undirected and unweighted networks with overlap-
ping communities (Lancichinetti and Fortunato 2009a). The plot shows the variation of the normalized mutual
information between the planted and the recovered partition, in its generalized form for overlapping communities

(Lancichinetti et al 2009), with the fraction of overlapping nodes. The error bars indicate standard deviation. The
networks have 1000 nodes, the other parameters are τ1 = 2, τ2 = 1, ⟨k⟩ = 20, and kmax = 50. (a) Smin = 10,
Smin = 50, µt = 0.1; (b) Smin = 10, Smax = 50, µt = 0.3; (c) Smin = 20, Smax = 100, µt = 0.1; (d) Smin = 20,

Smax = 100, µt = 0.3.
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Fig. 8: Test of the proposed method on the benchmark for undirected and unweighted networks with overlap-
ping communities (Lancichinetti and Fortunato 2009a). The plot shows the variation of the normalized mutual
information between the planted and the recovered partition, in its generalized form for overlapping communities

(Lancichinetti et al 2009), with the fraction of overlapping nodes. The error bars indicate standard deviation. The
networks have 5000 nodes, the other parameters are τ1 = 2, τ2 = 1, ⟨k⟩ = 20, and kmax = 50. (a) Smin = 10,
Smin = 50, µt = 0.1; (b) Smin = 10, Smax = 50, µt = 0.3; (c) Smin = 20, Smax = 100, µt = 0.1; (d) Smin = 20,

Smax = 100, µt = 0.3.
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