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Abstract. Identification and classification of overlap nodes in communi-
ties is an important topic in data mining. In this paper, a new clustering
method to uncover overlap nodes in complex networks is proposed. It is
based on particles walking and competing with each other, using random-
deterministic movement. The new community detection algorithm can
output not only hard labels, but also continuous-valued output (soft la-
bels), which corresponds to the levels of membership from the nodes
to each of the communities. Computer simulations were performed with
synthetic and real data and good results were achieved.
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1 Introduction

In the last years, the advances and the convergence of computing and commu-
nication has rapidly increased our capacities of generating and collecting data.
However, most of this data is in its raw form, and it is not useful until it is
discovered and articulated. Data Mining is the process of extracting the implicit
potentially useful information from the data. It is a multidisciplinary field, draw-
ing works from areas including statistics, machine learning, artificial intelligence,
data management and databases, pattern recognition, information retrieval, neu-
ral networks, data visualization, and others [1–5].

Community Detection is one of the data mining problems that arose with the
advances in computing and the increasingly interest in complex networks, which
studies large scale networks with non-trivial topological structures, such as so-
cial networks, computer networks, telecommunication networks, transportation
networks, and biological networks [6–8]. Many of these networks are found to
be divided naturally into communities or modules, therefore discovering of these
communities structure became an important topic of study [9–13]. Recently, a
particle competition approach was successfully applied to detect communities
modeled in networks [14].

The notion of communities in networks is straightforward, they are defined
as a subgraph whose nodes are densely connected within itself but sparsely



connected with the rest of the network. However, in practice there are common
cases where some nodes in a network can belong to more than one community.
For example: in a social network of friendship, individuals often belong to several
communities: their families, their colleagues, their classmates, etc. These nodes
are often called overlap nodes, and most known community detection algorithms
cannot detect them. Therefore, uncovering the overlapping community structure
of complex networks becomes an important topic in data mining [15–17].

In this paper we present a new clustering technique, based on particle walking
and competition. We have extended the model proposed in [14] to output not
only hard labels, but also a fuzzy output (soft labels) for each node in the
network. The continuous-valued output can be seen as the levels of membership
from each node to each community. Therefore, the new model is able to uncover
the overlap community structure in complex networks.

The rest of this paper is organized as follows: Section 2 describes the model
in details. Section 3 shows some experimental results from computer simulations,
and in Section 4 we draw some conclusions.

2 Model Description

The model we propose in this paper is an extension of the particle competition
approach proposed by [14], which is used to detect communities in networks.
Some particles walk in a network, competing with each other for the possession
of nodes, while rejecting intruder particles. After a number of iterations, each
particle will be confined within a community of the network, so the communities
can be divided by examining the nodes ownership. The new model is not only
suitable to detect community structure, but it can also uncover overlap commu-
nity structure. In order to achieve that, we have changed the nodes and particles
dynamics, and introduced a few new variables, among other details that will
follow.

Let the network structure be represented as a graph G = (V,E), with
V = {v1, v2, . . . , vn}, where each node vi is an element from the network. An
adjacency matrix W defines which network nodes are interconnected:

Wij = 1, if there is an edge between nodes i and j, (1)
Wij = 0, otherwise, (2)

and Wii = 0.
Then, we create a set of particles P = (ρ1, ρ2, . . . , ρc), in which each particle

corresponds to a different community. Each particle ρj has a variable ρωj (t) ∈
[ωmin ωmax] is the particle potential characterizing how much the particle can
affect a node at time t, in this paper we set the constants ωmin = 0 and ωmax = 1.

Each node vi has two variables vωi (t), and vλi (t). The first variable is a vector
vωi (t) = {vω1

i (t), vω2
i (t), . . . , vωc

i (t)} of the same size of P, where each element
v
ωj

i (t) ∈ [ωmin ωmax] corresponds to the instantaneous level of ownership by
particle ρj over node vi. The sum of the levels of ownership of each node is



always a constant, because a particle increases its own ownership level and, at
the same time, decreases the other particles ownership levels. Thus, the following
equations always holds:

c∑
j=1

v
ωj

i = ωmax + ωmin(c− 1). (3)

The second variable is also a vector vλi (t) = {vλ1
i (t), vλ2

i (t), . . . , vλc
i (t)} of the

same size of P and it also represents ownership levels, but unlike vωi (t) which
denotes the instantaneous ownership levels, vλj

i (t) ∈ [0 ∞] rather denotes long
term ownership levels, accumulated through the whole process. The particle with
higher ownership level in a given non-overlap node after the last iteration of the
algorithm is usually the particle which have visited that node more times, but
that does not always apply to overlap nodes, in which sometimes the dominant
particle could easily change in the last iterations, and thus it would not corre-
spond to the particle which have dominated that node for more instants of time.
Therefore, the new variable vλi (t) was introduced in order to define the owner-
ship of nodes considering the whole process. Using a simple analogy, we can say
that now the champion is not the one who have won the last games, but rather
the one who have won more games in the whole championship. Notice that the
long term ownership levels only increases and their sum is not constant, they
are normalized only at the end of the iterations.

We begin the algorithm by setting the initial level of instantaneous ownership
vector vωi by each particle ρj as follows:

v
ωj

i (0) = ωmin + (
ωmax − ωmin

c
), (4)

which means that all nodes starts with all particles instantaneous ownership
levels equally set. Meanwhile, the long term ownership levels vλi (t) are all set to
zero:

v
λj

i (0) = 0. (5)

The initial position of each particle ρvj (0) is set randomly, to any node in V,
and the initial potential of each particle is set to its minimum value, as follows:

ρωj (0) = ωmin. (6)

Each particle will choose a neighbor to visit based in a random-deterministic
rule. At each iteration, each particle will chose between random walk or deter-
ministic walk, where random walk means the particle will try to move to any
neighbor randomly chosen, i.e., the particle ρj will try to move to any node vi
chosen with the probabilities defined by:

p(vi|ρj) =
Wki∑n
q=1Wqi

, (7)

where k is the index of the node node being visited by particle ρj , so Wki = 1
if there is an edge between the current node and vi, and Wki = 0 otherwise.



The deterministic walk means that the particle will try to move to a neighbor
with probabilities according to the nodes instantaneous ownership levels, i.e., the
particle ρj will try to move to any neighbor vi chosen with probabilities defined
by:

p(vi|ρj) =
Wkiv

ωj

i∑n
q=1Wqiv

ωj

i

, (8)

again, k is the index of the node stored being visited by particle ρj .
At each iteration, each particle has probability pdet of taking deterministic

movement and probability 1−pdet of taking random movement, with 0 ≤ pdet ≤
1. Once the random movement or deterministic movement is chosen, a target
neighbor ρτj (t) will be randomly chosen with probabilities defined by Eq. 7 or
Eq. 8 respectively.

Regarding the node dynamics, at time t, each instantaneous ownership level
vωk
i (t) of each node vi, which was chosen by a particle ρj as its target ρτj (t), is

defined as follows:

vωk
i (t+ 1) =

{
max{ωmin, v

ωk
i (t)− ∆vρ

ω
j (t)

c−1 } if k 6= j

vωk
i (t) +

∑
q 6=k v

ωq

i (t)− vωq

i (t+ 1) if k = j
, (9)

where 0 < ∆v ≤ 1 is a parameter to control the changing rate of the instanta-
neous ownership levels. If ∆v takes a low value, the node ownership levels change
slowly, while if it takes a high value, the node ownership levels change quickly.
Each particle ρj will increase their corresponding instantaneous ownership level
v
ωj

i of the node vi they are targeting, while decreasing the instantaneous own-
ership levels (of this same node) that corresponds to the other particles, always
respecting the conservation law defined by Eq. 3.

Regarding the particle dynamics, at time t, each particle potential ρωj (t) is
set as:

ρωj (t+ 1) = ρωj (t) +∆ρ(v
ωj

i (t+ 1)− ρωj (t)) (10)

where vi(t + 1) is the node rhoj is targeting, 0 < ∆ρ ≤ 1 is a parameter to
control the particle potential changing rate. Therefore, every particle ρj have
their potential ρωj set to approximate the value of instantaneous ownership level
v
ωj

i from the node it is currently targeting. In this sense, a particle gets stronger
when it is visiting a node with higher ownership level of its own, but it will be
weakened if it tries to invade a node dominated by other particle.

The long term ownership levels are adjusted only when the particle selects the
random movement. This rule is important because although the deterministic
movement is useful to prevent particles from abandoning their neighborhood,
which would let it susceptible to other particles attack, it is also a mechanism
that makes a node gets more visits from the particle that currently dominates it.
We consider only when the random movement was chosen because, in this case,
particles will choose a target node based only in their current neighborhood, and
not in their instantaneous ownership levels that are important for community
detection, but are too volatile in overlap nodes. Therefore, for each particle



selected in random movement by a particle ρj , the long term ownership levels
v
λj

i are update as follows:

v
λj

i (t+ 1) = v
λj

i (t) + ρωj (t), (11)

where vi is the node ρj is targeting. The increase will always be proportional to
the current particle potential, which is a desirable feature because the particle
will probably have a higher potential when it is arriving from its own neighbor-
hood, while it will have a lower potential when it is arriving from a node from
other particles neighborhoods.

It should be noted that a particle really visits a target node only if its own-
ership level in that node is higher than the others; otherwise, a shock happens
and the particle stays at the current node until next iteration.

At the end of the iterations, the degrees of membership f ji ∈ [0 1] for each
node vi are calculated using the long term ownership levels, as follows:

f ji =
v
λj

i (∞)∑c
q=1 v

λq

i (∞)
(12)

where f ji represents the final membership level of the node vi to community j.
In summary, our algorithm works as follows:

1. Build the adjacency matrix W by using Eq. 1,
2. Set nodes ownership levels by using Eq. 4 and Eq. 5,
3. Set particles initial positions randomly and their potentials by using Eq. 6,
4. Repeat steps 5 to 8 until convergence or for a pre-defined number of steps,
5. Select the target node for each particle by using Eq. 8 or Eq. 7 for determin-

istic movement or random movement respectively,
6. Update nodes ownership levels by using Eq. 9,
7. If the random movement was chosen, update the long term ownership levels

by using Eq. 11,
8. Update particles potentials by using Eq. 10,
9. Calculate the membership levels (fuzzy classification) by using Eq. 12.

3 Computer Simulations

In order to test the overlap detection capabilities of our algorithm, we generate
a set of networks with community structure using the method proposed by [13].
Here, all the generated networks have n = 128 nodes, split into four communities
containing 32 nodes each. Pairs of nodes which belongs to the same community
are linked with probability pin, whereas pairs belonging to different communities
are joined with probability pout. The total average node degree k is constant
and set to 16. The value of pout is taken so the average number of links a node
has to nodes of any other community, zout, can be controlled. Meanwhile, the
value of pin is chosen to keep the average node degree k constant. Therefore,



zout/k defines the mixture of the communities, and as zout/k increases from zero,
the communities become more diffuse and harder to identify. In each of these
generated networks we have added a 129th node and created 16 links between
the new node and nodes from the communities, so we could easily determine an
expected “fuzzy” classification for this new node based on the count of its links
with each community.

The networks were generated with zout/k = 0.125, 0.250, and 0.375 and the
results are shown in Tables 1, 2, and 3 respectively. The first column of these
tables shows the number of links the 129th node has to communities A, B, C, and
D, respectively. Notice that in each configuration the 129th node has different
overlap levels, varying from the case where it fully belongs to a single community
up to the case where it belongs to the four communities almost equally. From
2nd to 5th column we have the fuzzy degree of membership of the 129th node
relative to communities A, B, C, and D respectively, obtained by our algorithm.
The presented values are the average of 100 realizations with different networks.
For these simulations, the parameters were set as follows: pdet = 0.5, ∆v = 0.4
and ∆ρ = 0.9.

Table 1. Fuzzy classification of a node connected to network with 4 communities
generated with zout/k = 0.125

Connections Fuzzy Classification

A-B-C-D A B C D

16-0-0-0 0.9928 0.0017 0.0010 0.0046

15-1-0-0 0.9210 0.0646 0.0079 0.0065

14-2-0-0 0.8520 0.1150 0.0081 0.0248

13-3-0-0 0.8031 0.1778 0.0107 0.0084

12-4-0-0 0.7498 0.2456 0.0032 0.0014

11-5-0-0 0.6875 0.3101 0.0016 0.0008

10-6-0-0 0.6211 0.3577 0.0111 0.0101

9-7-0-0 0.5584 0.4302 0.0011 0.0103

8-8-0-0 0.4949 0.4944 0.0090 0.0017

8-4-4-0 0.5025 0.2493 0.2461 0.0021

7-4-4-1 0.4397 0.2439 0.2491 0.0672

6-4-4-2 0.3694 0.2501 0.2549 0.1256

5-4-4-3 0.3144 0.2491 0.2537 0.1828

4-4-4-4 0.2512 0.2506 0.2504 0.2478

The results shown that the method was able to accurately identify the fuzzy
communities of the overlap nodes. The accuracy gets lower as zout/k increases,
this was expected, since a higher zout/k means that the communities are more
diffuse and the observed node can be connected to nodes that are overlap nodes
themselves.



Table 2. Fuzzy classification of a node connected to network with 4 communities
generated with zout/k = 0.250

Connections Fuzzy Classification

A-B-C-D A B C D

16-0-0-0 0.9912 0.0027 0.0024 0.0037

15-1-0-0 0.9318 0.0634 0.0026 0.0023

14-2-0-0 0.8715 0.1219 0.0023 0.0044

13-3-0-0 0.8107 0.1827 0.0036 0.0030

12-4-0-0 0.7497 0.2437 0.0044 0.0022

11-5-0-0 0.6901 0.3036 0.0034 0.0029

10-6-0-0 0.6298 0.3654 0.0020 0.0028

9-7-0-0 0.5584 0.4360 0.0026 0.0030

8-8-0-0 0.4952 0.4985 0.0027 0.0036

8-4-4-0 0.5060 0.2485 0.2427 0.0028

7-4-4-1 0.4442 0.2477 0.2429 0.0652

6-4-4-2 0.3762 0.2465 0.2514 0.1259

5-4-4-3 0.3178 0.2500 0.2473 0.1849

4-4-4-4 0.2470 0.2518 0.2489 0.2523

Based on this data, we have created an overlap measure in order to easily
illustrate the application of the algorithm in more complex networks with lots of
overlap nodes. Therefore, the overlap index oi for a node vi is defined as follow:

oi =
f j∗∗i

f j∗i
(13)

where j∗ = arg maxj f
j
i and j ∗ ∗ = arg maxj,j 6=j∗ f

j
i , and oi ∈ [0 1], where

oi = 0 means completely confidence that the node belongs to a single commu-
nity, while oi = 1 means the node is completely undefined among two or more
communities.

Then, we have applied the algorithm to a problem with 1000 elements, split
into four communities with 250 elements each. There are four gaussian kernels in
a two dimensional plane and the elements are distributed around them. To build
the network, each element is transformed into a network node. Two elements
i and j are connected if their Euclidean distance d(i, j) < 1. The algorithm
parameters were set as follows: pdet = 0.6, ∆v = 0.4 and ∆ρ = 0.9. In Figure 1
the overlap index of each node is indicated by their colors. It is easy to realize
that the closer to the communities frontier the nodes are, the higher are their
respective overlap indexes.

Finally, the algorithm was applied to the famous Zachary’s Karate Club
Network [18] and the results are shown in Figure 2. The algorithm parameters
were set as follows: pdet = 0.6, ∆v = 0.4 and ∆ρ = 0.9. Again, the overlap index
of each node is indicated by their colors. In Table 4 the fuzzy classification of all
the nodes on this network are shown.



Table 3. Fuzzy classification of a node connected to network with 4 communities
generated with zout/k = 0.375

Connections Fuzzy Classification

A-B-C-D A B C D

16-0-0-0 0.9709 0.0092 0.0108 0.0091

15-1-0-0 0.9160 0.0647 0.0093 0.0101

14-2-0-0 0.8571 0.1228 0.0104 0.0097

13-3-0-0 0.8008 0.1802 0.0100 0.0090

12-4-0-0 0.7422 0.2385 0.0095 0.0098

11-5-0-0 0.6825 0.2958 0.0123 0.0093

10-6-0-0 0.6200 0.3566 0.0111 0.0123

9-7-0-0 0.5582 0.4181 0.0128 0.0109

8-8-0-0 0.4891 0.4846 0.0130 0.0133

8-4-4-0 0.5045 0.2437 0.2406 0.0113

7-4-4-1 0.4397 0.2461 0.2436 0.0705

6-4-4-2 0.3797 0.2471 0.2445 0.1287

5-4-4-3 0.3175 0.2439 0.2473 0.1913

4-4-4-4 0.2462 0.2494 0.2549 0.2495

4 Conclusions

This paper presents a new clustering technique using combined random-deterministic
walking and competition among particles, where each particle corresponds to a
class of the problem. The algorithm outputs not only hard labels, but also soft la-
bels (fuzzy values) for each node in the network, which corresponds to the levels
of membership from that node to each community. Computer simulations were
performed in both synthetic and real data, and the results shows that our model
is a promising mechanism to uncover overlap community structure in complex
networks.
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