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Abstract. Semi-supervised learning is an important topic in machine
learning. In this paper, a network-based semi-supervised classification
method is proposed. Class labels are propagated by combined random-
deterministic walking of particles and competition among them. Different
from other graph-based methods, our model does not rely on loss func-
tion or regularizer. Computer simulations were performed with synthetic
and real data, which show that the proposed method can classify arbi-
trarily distributed data, including linear non-separable data. Moreover, it
is much faster due to lower order of complexity and it can achieve better
results with few pre-labeled data than other graph based methods.
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1 Introduction

Complex networks is a recent and active area of scientific research, which studies
large scale networks with non-trivial topological structures, such as computer
networks, telecommunication networks, transportation networks, social networks
and biological networks [1, 2, 3]. Many of these networks are found to be divided
naturally into communities or modules, thus discovering of these communities
structure became one of the main issues in complex network study [4, 5, 6, 7, 8].
Recently, a particle competition approach was successfully applied to detect
communities modeled in non-weighted networks [9].

The problem of community detection is also related to the machine learning
field, which is concerned with the design and development of algorithms and tech-
niques that allow computers to “learn”, or improve their performance through
experience [10]. Machine learning algorithms usually falls in one of these two
categories: supervised learning and unsupervised learning. In supervised learn-
ing, the algorithm learns a function from the training data, which consists of
pairs of samples and their respective labels, so after having seen a number of
training examples the algorithm can predict the labels of unseen data. On the
other hand, in unsupervised learning the samples are unlabeled and the objective
is to determine how the samples are organized. One form of unsupervised learn-
ing is clustering, which is the partitioning of a data set into subsets (clusters), so
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that the data in each cluster share some characteristics. The algorithm proposed
in [9] to detect communities belongs to the unsupervised learning category.

With the emergence of the complex networks field and the study of larger
networks, it is common to have large data sets in which only a small subset of
samples are labeled. That happens because unlabeled data is relatively easy to
collect, but labeling samples is often an expensive, difficult or time consuming
task, since it often requires the work of humans specialists. Supervised learning
techniques cannot handle this kind of problem because they require all samples
labeled before the training process. Unsupervised learning techniques cannot be
applied to solve this kind of problem either because they ignore label informa-
tion of samples. In order to solve these problems a new class of machine learning
algorithms arose, the semi-supervised class. Semi-supervised learning is halfway
between supervised and unsupervised learning, it address these problems by com-
bining a few labeled samples with a lot of unlabeled samples to produce better
classifiers while requiring less human effort [11, 12]. For example, consider Fig.
2a, it is a toy data set with 2000 samples, but only 20 of them are labeled (red
circles and blue squares), a supervised algorithm would learn from only these
20 samples and it would probably misclassify a lot of unseen samples, while an
unsupervised algorithm would consider all the 2000 samples without any dis-
tinction, thus not taking advantage of the labeled ones. On the other hand, a
semi-supervised algorithm can learn from both labeled and unlabeled samples,
probably producing a better classifier. Semi-supervised methods include genera-
tive models [13, 14], cluster-and-label techniques [15, 16], co-training techniques
[17, 18], low-density separation models, like Transductive Support Vector Ma-
chines (TSVM) [19], and graph-based methods, like Mincut [20] and Local and
Global Consistency [21].

Traditional semi-supervised techniques, such as Transductive Support Vector
Machine (TSVM) [19], can identify data classes of well defined form, but usually
fail to identify classes of irregular form. Thus, assumptions on class distribu-
tion have to be made and unfortunately it is usually unknown a priori. On the
other hand, since most graph based methods have high order of computational
complexity (O(n3)), it makes their use limited to small data sets [11]. This is
considered as a serious shortage because semi-supervised learning techniques are
usually applied to data sets with large amount of unlabeled data. Also, many
graph based methods can be viewed as regularization frameworks, they are sim-
ilar to each other, basically differing only in the particular choice of the loss
function and the regularizer [22, 20, 21, 23, 24, 25].

In this paper we present a new kind of network-based semi-supervised clas-
sification technique, by using particle walking and competition. We extend the
model proposed in [9] to handle weighted networks and to take advantage of
pre-labeled data. The main contributions of this new method are:

– unlike most other graph-based models, it does not rely on loss functions or
regularizers;

– it can classify arbitrarily distributed data, including linear non-separable data;
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– it is much faster than other graph-based methods due to its low order of
complexity and thus it can be used to classify large data sets;

– it can achieve better results than other graph-based methods when a small
number of data samples is labeled.

This paper is organized as follows: Section 2 describes the model in details.
Section 3 shows some experimental results from computer simulations, and in
Section 4 we draw some conclusions.

2 Model Description

Our model is an extension of the particle competition approach proposed by
[9]. Their model is used to detect communities in networks, represented by non-
weighted networks. There are several particles walking in a network, competing
with each other for the possession of network nodes, and rejecting intruder par-
ticles. In this way, after a number of iterations, each particle will be confined
within a community of the network, so the communities can be divided by ex-
amining the nodes ownership.

In this paper, we have changed the nodes and particles dynamics, and some
other details that will follow, so the new model is not only suitable to conduct
semi-supervised learning, but also can represent weighted networks (weights rep-
resent pair-wise similarity between data samples). The model is described as
follows:

Given a data set X = {x1, x2, . . . , xn} ⊂ Rm and a label set L = {1, 2, . . . , c},
some samples xi are labeled as yi ∈ L and some are unlabeled as yi = ∅. The
goal is to provide a label to these unlabeled samples.

First, we define a graph G = (V,E), with V = {v1, v2, . . . , vn}, and each
node vi corresponds to a sample xi. An affinity matrix W [21, 26] defines the
weight between the edges in E as follows:

Wij = exp−||xi − xj ||2/2σ2 if i 6= j, (1)
Wii = 0, (2)

where Wij defines the pair-wise relationship between xi and xj , with the diagonal
being zero, and σ is a scaling parameter which controls how quickly the affinity
Wij falls off with the distance between xi and xj .

Then, we create a set of particles P = (ρ1, ρ2, . . . , ρc), in which each particle
corresponds to a label in L. Each particle ρj has three variables ρvj (t), ρ

ω
j (t) and

ρτj (t). The first variable, ρvj (t) ∈ V , is used to represent the node vi being visited
by particle ρj at time t. The second variable, ρωj ∈ [ωmin ωmax] is the particle
potential characterizing how much the particle can affect a node at time t, in
this paper we set the constants ωmin = 0 and ωmax = 1. The third variable,
ρτj (t) ∈ V , represents the target node by particle ρj at time t, sometimes the
particle will be accepted by the node, so ρτj (t) = ρvj (t), and some times it will
be reject, thus ρτj (t) 6= ρvj (t), as we will explain later.
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Each node vi have two variables: vρi (t) and vωi (t). The first, vρi (t) ∈ P register
the particle that owns node vi at time t. The second variable is a vector vωi (t) =
{vω1
i (t), vω2

i (t), . . . , vωc
i (t)} of the same size of L, where each element vωj

i (t) ∈
[ωmin ωmax] corresponds to the level of ownership by particle ρj over node vi.
So, at any given time t the particle ρj that owns vi is defined as:

vρi (t) = arg max
j
v
ωj

i (t). (3)

Also, the following equations always holds:

c∑
j=1

v
ωj

i = ωmax + ωmin(c− 1). (4)

We begin the algorithm by setting the initial level of ownership vector vωi by
each particle ρj as follows:

v
ωj

i (0) =

 ωmax if yi = j
ωmin if yi 6= j and yi 6= ∅

ωmin + (ωmax−ωmin
c ) if yi = ∅

, (5)

which means the nodes corresponding to labeled samples already starts with
their ownership set to the corresponding particle with maximum strength, while
the other nodes starts with all particles ownership levels equally set.

The initial position of each particle ρvj (0) is set to one of the nodes that
they already owns (corresponding to pre-labeled samples) as set in Eq. 5, so the
following holds:

ρvj (0) = {vi|yi = j}. (6)

The initial potential of each particle is set as:

ρωj (0) = ωmax. (7)

We kept the concept of random moving and deterministic moving from the
original model, where random moving means the particle will try to move to
any neighbor randomly chosen, and deterministic moving means the particle
will visit a node that it already owns. Here we extended these rules to handle
weighted networks as follows: in random moving the particle ρj will try to move
to any neighbor vi randomly chosen with probability defined by:

p(vi|ρvj ) =
Wki∑n
q=1Wqi

, (8)

where k is the index of the node stored in ρvj , so Wki represents the weight of
the edge connecting nodes ρvj and vi. In deterministic moving the particle ρj will
try to move to any neighbor vi randomly chosen with probability defined by:

p(vi|ρvj ) =
Wkiv

ωj

i∑n
q=1Wqiv

ωj

i

, (9)
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and again, k is the index of the node stored in ρvj . At each iteration, each particle
has probability pdet of taking deterministic moving and probability 1 − pdet of
taking random moving, and 0 ≤ pdet ≤ 1. Once the deterministic moving or
random moving is chosen, the target neighbor ρτj (t) will be randomly chosen with
probabilities defined by Eq. 8 or Eq. 9 respectively. Figure 1 shows an example
situation where a particle is going to choose among three neighbors with different
edges weights and ownership levels, the graphics show the probabilities of each
node being chosen when using either deterministic or random moving.

Fig. 1: Deterministic Moving and Random Moving Example Illustration. On the
left, the particle ρ1 is going to choose its target ρτ1 among v2, v3 and v4. The
graphics inside each node denotes their respective ownership levels vω1

i (red)
and vω2

i (yellow), which corresponds to ρ1 and ρ2 respectively. On the right, the
graphs show the probabilities of choosing each node for either deterministic or
random moving.

Regarding the node dynamics, at time t, each ownership level vωk
i (t) of each

node vi, which was chosen by a particle ρj as its target ρτj (t), is defined as follows:

vωk
i (t+ 1) =


vωk
i (t) if yi 6= ∅

max{ωmin, v
ωk
i (t)− ∆vρ

ω
j (t)

c−1 } if yi = ∅ and k 6= j

vωk
i (t) +

∑
q 6=k v

ωq

i (t)− vωq

i (t+ 1) if yi = ∅ and k = j

, (10)
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where 0 < ∆v ≤ 1 is a parameter to control the ownership levels changing speed.
If ∆v takes a low value, the node ownership levels change slowly, while if it takes
a high value, the node ownership levels change quickly. Each particle ρj will
increase their corresponding ownership level vωj

i of the node vi they are targeting
while decreasing the ownership levels (of this same node) that corresponds to
the other particles, always respecting Eq. 4. So if the particle already owns the
node its targeting, it will reinforce it, else it will increase its own ownership level,
possibly becoming the new owner. However, vωi is fixed when yi 6= ∅ (particle
visiting a pre-labeled sample), so their ownership levels never change.

Regarding the particle dynamics, at time t, each particle potential ρωj (t) is
set as:

ρωj (t+ 1) = v
ωj

i (t+ 1) with vi(t+ 1) = ρτj (t+ 1), (11)

which means every particle ρj have their potential ρωj set to the value of its own-
ership level vωj

i from the node it is currently targeting. This way, a particle will be
strong as it is walking in its own neighborhood, but it will become weak if it try
to invade another neighborhood. Notice that to handle semi-supervised learning
we have made vωi fixed when yi 6= ∅, so a particle ρj can always “recharge” their
potential to the maximum (ρωj = ωmax) when visiting nodes vi corresponding
to pre-labeled samples of its own class (yi = j). Meanwhile, particles ρj cannot
visit or change ownership levels of nodes vi corresponding to pre-labeled samples
of other class (yi 6= j and yi 6= ∅) no matter how hard they try, and they will
become weak (ρωj = ωmin) every time they try.

Finally, the particle position at time t is defined as follows:

ρvj (t+ 1) =
{
ρτj (t+ 1) if vρi (t+ 1) = ρj
ρvj (t) if vρi (t+ 1) 6= ρj

, (12)

with vi = ρτj (t + 1), which means that after raising its own ownership level on
the target node ρτj , the particle ρj will move to it if it already owned it or if
it became the new owner after that ownership level increase, else, it will stay
where it was. Notice that the node owner vρi at any time is defined by Eq. 3.

We have also introduced a “reset” mechanism to take the particles back to one
of the nodes corresponding to pre-labeled samples after a pre-defined amount of
steps, so the particles could walk around all the pre-labeled nodes. This way, after
each r steps, the particles are reset using Eq. 6, and their respective potentials
are set to the maximum by Eq. 7.

So, in summary, our algorithm works as follows:

1. Build the affinity matrix W by using Eq. 1,
2. Set nodes ownership levels by using Eq. 5,
3. Set particles initial positions and potentials by using Eq. 6 and Eq. 7 respec-

tively,
4. Repeat steps 5 to 11 until convergence or for a pre-defined number of steps,
5. Select between deterministic moving or random moving,
6. Select the target node for each particle by using Eq. 8 or Eq. 9 for determin-

istic moving or random moving respectively,
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7. Update nodes ownership levels by using Eq. 10,
8. Update nodes ownership flags by using Eq. 3,
9. Update particles potentials by using Eq. 11,

10. Update the particles positions by using Eq. 12,
11. If r steps are reached, reset particles positions and potentials using Eq. 6

and Eq. 7 respectively.

3 Computer Simulations

In this section, we present the simulation results of some semi-supervised clas-
sification tasks by using the proposed model with synthetic and real data sets.
We also compare our method with the Global and Local Consistency Method
[21] for both results accuracy and execution time. For our method, the following
parameters were held constant: pdet = 0.6 and ∆v = 0.1. The other parameters
(σ and r) were set to their optimal values for each experiment. For the Consis-
tency Method, the parameter α = 0.99 was held constant, as the authors did in
their original article [21], and σ was set to its optimal value for each experiment.

The first experiment was carried by using the artificial image shown in Fig.
2a, a toy data set with 2000 samples divided in two linearly non-separable classes
(1000 samples per class), 20 of these samples (1%) are pre-labeled (10 from each
class). Our algorithm was able to accurately classify all the unlabeled data as
shown in Fig. 2b.
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(a) Toy Data (Banana-Shaped)
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(b) Classification results

Fig. 2: Classification of the banana-shaped patterns. (a) toy data set with 2000
samples divided in two classes, 20 samples are pre-labeled (red circles and blue
squares). (b) classification achieved by the proposed method.

In the second experiment, we have used the Iris data set from the UCI Ma-
chine Learning Repository [27], which contains 4 attributes and 3 classes of 50
instances each, where each class refers to a type of iris plant. Both our Parti-
cle Method and the Consistency Method were used to perform semi-supervised
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classification in this data set. At each set of experiments, some samples (10%
to 2%) were randomly chosen as the pre-labeled samples, and the remaining
ones were presented unlabeled to both algorithms for classification. The classi-
fication results from the algorithms are shown in Figure 3. As our algorithm is
non-deterministic there is small differences in the results obtained from different
runs, so all the results presented here are the average of 100 runs with the same
parameters and the same pre-labeled samples.
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Fig. 3: Classification Accuracy in the Iris data set with different number of pre-
labeled samples.

Our third experiment was performed using another real database, the Wine
data set, also from the UCI Machine Learning Repository [27]. This data set
results from a chemical analysis of wines grown in the same region in Italy, but
derived from three different cultivars. The analysis determined the quantities
of 13 constituents (attributes) found in these three types of wines, there are
178 samples in total. Again, for each set of experiments, some samples were
randomly chosen as the pre-labeled samples while the others were presented to
the algorithms unlabeled. The classification results from both algorithms are
shown in Figure 4. The presented results, once more, are the average of 100 runs
with the same parameters and pre-labeled samples.

By observing Figures 3 and 4 we can notice that the Particle Method out-
performed the Consistency Method in most cases, specially with the Wine data
set. The major gains are observed when there are fewer pre-labeled nodes, which
is another advantage of our method.

We also expect our method to be faster than other graph-based methods,
because most of them have order of complexity O(n3) [11]. For instance, con-
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Fig. 4: Classification Accuracy in the Wine data set with different number of
pre-labeled samples.

sider the Consistency Method [21], although it usually requires few iterations to
converge, each iteration is O(n3) as they include n × n matrix multiplications.
Also, there is a single step before the iterations, the laplacian normalization,
which has high computational cost, for small data sets the cost of this step is
even higher than all the iterations together. On the other hand, although our
method usually requires thousands of iterations even for small data sets, each
iteration is only O(n × c), so we expect our method to escalate well and to be
quite fast for larger data sets.

In order to verify our expectations we have generated some banana-shaped
data sets with increasing number of samples, using PRTools [28] function
gendatb with the variance parameter fixed to 0.8. Then, we let both our method
and the Consistency Method classify each of these data sets, running with their
optimal parameters. For each data set we randomly chosen 10% of the samples
(half from each class) to be the pre-labeled samples input for both algorithms,
and finally we have measured the time each algorithm takes to achieve at least
95% correct classification of the remaining samples. All these tests were ran in
a regular desktop computer with an Intel Core 2 Quad Processor model Q9450
and 4GB of RAM. Both algorithms were implemented using MATLAB [29]. The
results are shown in Fig. 5. Notice that each experiment was repeated 20 times
and the values in this graphic are the average time in these 20 runs. By observing
the results, it is clear that our algorithm becomes much faster as we increase the
data set size, confirming our expectations.
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Fig. 5: Time elapsed to reach 95% correct classification with data sets of different
sizes.

4 Conclusions

This paper presents a new network-based method for semi-supervised classifi-
cation using combined random-deterministic walking and competition among
particles, where each particle corresponds to a class of the problem. Starting
from a small territory corresponding to a few pre-labeled samples, these parti-
cles can expand their domain by walking in their neighborhood and preventing
other particles from entering in their territory.

Computer simulations were performed in order to check the model viabil-
ity, and the results shows that our model is a promising mechanism for semi-
supervised classification, achieving good classification accuracy in both synthetic
and real data. It is important to notice that as the data set size grows our tech-
nique becomes much faster than other graph-based methods. This is a desir-
able feature since semi-supervised classification techniques are usually applied
to data sets with large number of unlabeled samples. Also, our method seems
to be less affected by the size of pre-labeled set, the ability to learn from less
pre-labeled samples is another desirable feature in semi-supervised classification,
as pre-labeling samples is the expensive or time consuming task to be avoided.

Another advantage of our method is that it can incorporate unseen data
without any modifications in the algorithm, just insert the new nodes in the
graph, calculate their connection weights and after some iterations each of these
new node will belong to a particle, probably the particle that owns its neighbors.
The new nodes can even affect the classification of older nodes, as they can
become a new strong link between different neighborhoods.
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