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Abstract

One salient feature of complex networks is the pres-
ence of communities, or groups of densely connected nodes.
Community detection can not only help to understand the
topological structure of complex networks, but also provide
new techniques for real applications, such as data mining. In
this paper, we propose a new model for community detection
by using the synchronization and desynchronization property
emerged from a network of Integrate and Fire neurons. This
model has been applied to artificial and real-world networks
and good results are obtained.
Keywords: Community Detection, Synchronization, Inte-
grate & Fire Neurons.

1. INTRODUCTION

A notable characteristic observed in diverse complex net-
works is the presence of local modular structures called
communities [1, 2]. Such communities can be defined as
groups of densely connected vertices, whereas connections
between vertices pertaining to different groups (communi-
ties) are sparse [3]. These communities can represent pat-
terns of interaction among vertices and its identification is
important for understanding the growth and the formation
mechanisms of the network [4]. Another important factor
about the structure of communities lies in the similarity of
vertices that compose them. Thus, by means of the iden-
tification and study of communities it is possible to obtain
pertinent information about the domain of the network. For
example, by scrutinizing the structure of links between pages
of the World Wide Web is possible to observe that ones de-
scribing related subjects are more densely connected among
than that with the remaining pages of the WWW [5]. This
property is also shared by real networks in other domains,
such as biological networks [6], metabolic networks [7], air
transportation routes [8], among others.

Detecting communities in a network is not a computa-
tionally trivial process. For example, a simple version of this

problem, the graph bi-partitioning problem, which consists
of dividing a graph in two parts of the same size in such a
manner that the number of links between these two parts is
minimum, is a NP-Complete problem [2]. To make things
worse, in real networks we do not know the number and the
size of the communities and also how they are organized.
Moreover, each community itself can be formed by other
sub-communities in a hierarchical manner [2, 9]. Due to its
importance in real applications and its high computational
complexity, many researchers have proposed techniques to
perform community detection automatically in complex net-
works [2, 3, 10–14].

In [2], a comparative study of various techniques was pre-
sented using the methodology described above. In this study
it was observed that, for networks where the communities
are well defined, it is quite easy to detect them and most
of algorithms show a good precision. However, as the pro-
portion of intercommunity links approach the proportion of
intra-community links, the precision of those algorithms are
reduced. In this situation, where the communities are not
well defined, just a few techniques are able to detect com-
munities with a precision higher than 80%. Although, as a
negative quality, those techniques have a high computational
complexity and can seldom be applied to large networks

Taking the tradeoff between precision and efficiency into
account, in this work a new technique for community detec-
tion based on the Oscillatory Correlation theory is proposed.
Accordingly to von der Malsbursg [15] the investigation of
the brain functions and the perceptual organization indicates
a temporal correlation mechanism as a representation frame-
work in the brain. The temporal correlation theory defines
that an object is represented by the temporal correlation of
the firing activity of neurons coding different features of this
object, while activity of neurons coding features of differ-
ent objects are not correlated in time. A natural way of en-
coding the temporal correlation theory is through the use of
oscillators [16, 17]. Thus, each object is represented by an
assembly of oscillators with synchronous activity whereas

Proceedings of the 9th Brazilian Conference on Dynamics Control and their Applications 
Serra Negra, SP - ISSN 2178-3667 123



0

1

2

5

6

7
10

11

19

20

29

30

31

3

4

8

9

14 17

21

22

25

12

15

23

26

27

28

16

18

24

13

32

33

39

41

42

43

45

46

48

51

53

54

57

59

63

34

36

37

40

5052

56

58

60

61

35

3862

47

49

44

55

64
65

66

71
72

74

75

76

77

78

80

82

8485 8788

90

91

93

94

95

69

73

79

83

89

67

70

86

68

81

92

96

97

103

104

105

106

107

109

114

115

116

118

119

120

126

12798

102

111

121

122

125

99

100

101

108

112

123

124

113

110

117

0

1

4

5

6

9

12

13

14

17

20

21

23

25

26

31

82

88

2

3

11

1619

22
2730

70

81

7

18

24

28

78

106

118

29

8

54

80

10

76

79

50

86

100

104

58

15

62

45

43

36

103

47

98

69

67

34

38

125

51

101

126

127

65

61

66

77

83

87

105

42

64
84

108

114

59

60

96

33

32

35

39

46

48
55

63

52

75

44

53

49

57

37

122

40

56

41

120

97

124
116

113

89

123

90

68

85

72

92

91

112

74

94
95

73

93

71

107

99 121

119

115

102

109

110

111

117

0

14

7

20

23

24

30

31

34

35

44

71

78

8890

93

2

5

15

16

21

27

28

36

60

66

70

102

3

8

9

11

22

25

29

68
89

6

10

12

13

17

18

26

40

51

52

53

62

82

120

123

41

61

96

100

118

14

46

84

121

33

55

77

122

58

107

57

64

19

72

111

114

116

86

125

10156

92

98

37

47

59

50

109

32

67

42

49

73

85

115

117

91

76

79

110

113

38

39

69

112

63

74

108

43

97

45

54

48

75

95

105

81

83

119

94

124

127

103

65

80

87

99

104

126

106

0

1

23

9

14

18
24

26

30

31

49

50

57

77

81

7

85

92

93

95

107

10

11

27

29

34

64

70

72

87

89

97

98

103

121

4

8
22

39

46

47

56

58

111

120

5

21

33

73

76

78

102

109

116

122

6

23

54

100

115

15

84

90

112

11452

96

12

25

61

86

108

110

119

13

19

42

55

124

16

117

40

44

53

74

79

82

17

71

88

99

106

126

20

38

75

83

35

67
68

48

28

127

91

101

37

66

118

123

125

60

65

43

63

41

32

62

69

113

51

45

80

104

36

59 105

94

(a) (b) (c) (d)

Figure 1 – Examples of random clustered networks with N = 128, M = 4, and 〈k〉 = 16. (a) zout/〈k〉 = 0.0; (b) zout/〈k〉 = 0.1;
(c) zout/〈k〉 = 0.3; (d) zout/〈k〉 = 0.5.

distinct objects are represented by desynchronized groups
of oscillators. This special form of temporal correlation is
called Oscillatory Correlation [17–19] and it is the base of
our model. Here, each oscillator corresponds to a vertex in
the network in such a way that densely connected group of
neurons, representing communities, have their firing activity
synchronized, while the firing activities of distinct communi-
ties are not correlated in time owing to the absence or reduce
number of links between them.

Another motivation for developing high precision and ef-
ficient techniques for community detection is its capability
to reveal topological structures of the network. Based on this
fact, those techniques are also important in machine learn-
ing, such as data clustering [20–22]. Generally speaking, the
community structure reveals similarities by means of connec-
tions between vertices. These similarities can expose clus-
tering in the data, and likewise reveal classes in classifica-
tion problems. Moreover, by representing data in a network,
classes or clusters of nontrivial shapes can be produced. Con-
sequently, the development of new techniques for community
detection can lead to the development of new algorithms for
machine learning.

This work is organized as follows. Section 2 describes our
model. The simulations are presented in Section 3. Finally,
Section 4 draws some conclusions.

2. MODEL DESCRIPTION

In this model, each vertex of the network is represented by
an Integrate and Fire (I&F) neuron [23] coupled by two con-
nection types: excitatory connections and inhibitory connec-
tions. The first one defines a cooperative mechanism respon-
sible for synchronizing group of neurons densely connected
(a community). In contrast, the inhibitory connections, de-
fined by a global inhibitor, have the purpose of breaking the
synchrony between groups, which means, segregating the
communities.

Each vertex is modeled by an I&F neuron defined by the
following equation:

dvi

dt
= −vi + Ii + Ei(t) − Yi(t) (1)

where vi represents to the potential of the neuron i, Ii defines

the external stimulation, Ei(t) defines the excitatory cou-
pling term, and Yi(t) the inhibitory signal from the global in-
hibitor. The neuron i fires when its potential vi ≥ θv , where
θv represents a firing threshold.

The excitatory coupling term Ei(t) is defined by:

Ei(t) =
∑
j∈∆i

ωijδ(t − tj) (2)

where δ is the delta Dirac function, tj represents the firing
time of neuron j, ∆i is the cooperative neighborhood of neu-
ron i defined by network connections. ωij represents the
excitatory coupling strength between neuron i and j and is
defined as follows:

ωij =
cE

|∆i|
(3)

where cE ∈ [0, 1] is a parameter and |∆i| represents the de-
gree of vertex i in the network. If cE is set to a high value,
neurons can become synchronized easily. On the other hand,
if a very low value is used, the synchrony is hardly achieved.

The inhibitory coupling term (global inhibitor) is defined
by:

Yi(t) =
cY

N

N∑
j=1

δ(t − tj) (4)

where cY ∈ [0, 1] is a parameter that defines the inhibition
strength and N represents the number of neurons (vertices)
in the network. If parameter cY assumes a high value, the in-
hibitory signal becomes stronger and more communities with
small size are detected. On the contrary, when a low value is
used, the synchrony among group of neurons becomes easier
resulting in a detection of fewer communities composed of
larger number of vertices.

Generally speaking, the model’s dynamics can be de-
scribed as follows. Owning to the excitatory connec-
tions, modeled by Equation (2), groups of neurons (vertices)
densely connected, communities, have their firing activity
synchronized. On the other hand, because of the presence of
the global inhibitor (Equation (4)) associated with a smaller
probability of intercommunity links, the firing activity of
neurons coding vertices from different communities are not
synchronized. For this reason, the proposed model is able
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Figure 2 – Illustration of the community detection process using the our oscillatory correlation model. In this simulation, N = 128,
M = 4, 〈k〉 = 16, zout/〈k〉 = 0.2, and c = 0.1. (a) Input random clustered network. (b) Time series of oscillators (black dots
represent neuron spikes).

to detect communities in networks in such a way that each
community has its own distinct temporal activity. Moreover,
an important characteristic of this approach is its simple dy-
namics and its fast synchronization, which results in a fast
algorithm.

Next section presents the computer simulations with the
proposed model using artificial and real networks.

3. COMPUTER SIMULATIONS

This section presents a set of simulations to test the ca-
pacity of our model as a computational tool for community
detection. In all these simulations, except the last, the param-
eters cE = cY = c assume the same value (c).

Given the number of different techniques and their dis-
tinct computational approaches, a traditional manner to com-
pare them accordingly to their community detection preci-
sion is through the use of random clustered networks [2, 11].
These networks are composed of N vertices divided into M
groups (communities). The network is created following two
probabilities, pin and pout. These probabilities are chosen
to control the number of intra-community links (links be-
tween vertices belonging to the same community) zin and
the number of intercommunity links zout (links connecting
vertices of different communities) for a given network aver-
age degree 〈k〉. Adjusting these parameters, the proportion
of intra-community links zin/〈k〉 and the proportion of inter-
community links zout/〈k〉 of the network are defined, where
(zin/〈k〉 + zout/〈k〉) = 1. In particular, many authors have
employed networks with N = 128 vertices divided into
M = 4 communities with the same size and 〈k〉 = 16. In this
way, starting from networks with zout/〈k〉 ≈ 0, where there
are no intercommunity links or the connections are sparse,
to zout/〈k〉 = 0.5, where on average half of a vertex links
are connected to vertices in the same community and the rest
connected to vertices of other communities, it is possible to
study and compare those algorithms. Figure 1 shows an ex-
ample of four random clustered networks for different values

of zout/〈k〉.
Figure 2 shows an illustration of the community detec-

tion process in a random clustered network composed of four
communities. In Figure 2(b) it is possible to observe the
synchronization phenomenon among neurons representing
those communities. Once the synchronization is achieved,
the communities can be easily identified accordingly to their
distinct firing activities representing each group.

Figure 3 shows the proportion of nodes correctly classi-
fied as a function of the proportion of intercommunity links
zout/〈k〉. This result was obtained from a set of 200 realiza-
tions on random clustered networks with N = 128, M = 4,
and 〈k〉 = 16, created according to the rule described in Sec-
tion 1. Based on this results one can see that our model shows
good results for a wide range of zout/〈k〉. When comparing
to results from other techniques, such as the GN model pro-
posed in [25], our oscillatory correlation model shows supe-
rior results, i.e. for a network with zout/〈k〉 = 0.4, the GN
model achieves a precision of 80% [2, 25] against 90% of our
model. Results even superior are obtained when networks
with zout/〈k〉 = 0.5 are considered. In this case, the GN
model presented a precision about 40% while ours showed
76 ± 10%. Moreover, when put side by side the results pre-
sented in Figure 3 to those published in [2], we can check
that the proposed model is among those which produces bet-
ter results of community detection.

Next, two simulations performed on real networks are
presented. Figure 4(a) shows the temporal series of all neu-
ron representing their respective vertex of the network of
friendship between individuals in the karate club studied in
[24]. In this figure, one can see that after a number of cycles
the communities can be identified by their own distinct time
series. In order to facilitate the visual inspection of the time
series produced here, in Figures 4(b)-(d), the time series for
some interval of time are presented in a higher temporal res-
olution. Figure 4(b) shows the presence of two communities,
except vertices number 9 and 10. This result is coherent to
the one obtained in [1]. Figures 4(c) and (d) show two other
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instants of the simulation. Particularly in item (c), we can
observe the presence of three communities, in which the ver-
tices 5, 6, 7, 11, and 17 are grouped in a third community.
Figure 5 shows a graphical illustration of this last division.
It is worth noting that the same result was obtained in the
study presented in [1, 25], which corroborates to show that
our model can achieve coherent results.

The next simulation, presented in Figures 6 and 7, was
performed on the dolphin social network [26]. This network
was created base on the social ties observed in pairs of dol-
phins during several years of observation. Here, we followed
the same methodology of the last simulation. First, Figure
6(a) shows the complete time series of this simulation and
Figures 6(b)-(d) some periods with higher temporal resolu-
tion. By analyzing Figure 6(d) one can see the presence of
three communities which matches to the results obtained in
[1, 3]. Figure 7 shows this community detection result graph-
ically.

The same network was also used in a simulation varying
the inhibitory coupling strength cY while cE = 0.3 was held
constant. Figure 8 depicts the time series of this simulation.
When t = 0, there is not inhibitory connections (cY = 0.0)
and a global synchronization is observed. In t = 2500, cY

is set to 0.2 and two communities are detected. Next, the
inhibitory strength is increased to 0.4 and four communities
are observed. Finally, cY = 0.5 and the network is further
divided into 8 communities. This simulation provides some
insights on how to perform hierarchical community detection
using our model.

More simulations with synthetic networks have been con-
ducted and results with similar quality have been obtained.

4. CONCLUSIONS

In this work, we have presented a new technique for com-
munity detection in complex networks based on the oscil-
latory correlation theory. The model has several interesting
features. First, it is biologically inspired because it is devel-
oped by using the synchronization/desinchronization of cou-
pled integrate and fire neurons. Second, it is efficient owning
to the quick synchronization process. Finally, it can achieve
high community detection precision. From this study we
can conclude that the biologically plausible neural networks,
which unify the dynamics of each individual neuron and the
topological structure of neural interaction, has emerged as a
powerful computational tool.
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Figure 6 – Temporal series of oscillators representing vertices the dolphin social network [26]. c = 0.3. (a) Complete temporal
series. (b)-(d) Partial series in higher temporal resolution t.
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Figure 7 – Community detection result on the dolphin social network [26]. c = 0.3.
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Figure 8 – Temporal series of oscillators representing vertices the dolphin social network [26]. cE is hold constant at 0.3; cY assumes
different values during the simulation: from t = 0 to t = 2500, cY = 0.0; 2500 < t ≤ 5000, cY = 0.2; 5000 < t ≤ 7500, cY = 0.4;
t ≤ 5000, cY = 0.5.
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