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Abstract

In this paper a visual selection mechanism based on an
integrate and fire neural network is proposed for selecting
objects in a given visual scene. In comparison to other vi-
sual selection approaches, our model is able to capture at-
tention of objects in complex forms, including those linearly
non-separable, and also processes a combination of fea-
tures of an input scene, such as intensity, color and orienta-
tion. Moreover, computer simulations show that the model
produce results similar to those observed in natural vision
systems.

1. Introduction

Attention is an important mechanism used by biological

systems to reduce the amount information obtained from the

environment. By selecting just part of the input data avail-

able on the retina, the brain is able to focus its limited com-

putational capacity on a specific task while ignoring irrele-

vant information [1, 2]. This process seems to optimize the

search procedure by selecting a number of possible candi-

date images and feature subsets which can be used in more

complex and specialized tasks such as object recognition

[3].

Visual attention is mainly generated by a combination of

two processes: information from the retina and early visual

cortical areas (called bottom-up attention or scene depen-
dent attention) and feedback signals from areas outside of

the visual cortex (called top-down attention or task depen-
dent attention) [4, 5].

Most of the bottom-up visual attention models are re-

lated to the concept of a Saliency Map [4]. In those models,

the first stage of processing is responsible to decompose the

input image into a set of feature maps. After that, a saliency

map is generated by a combination of those feature maps.

The saliency map is a topographical map which represents,

by a scalar quantity, all salient points over the entire input

visual stimulus [5, 4]. The main purpose of saliency map

is to guide a selection mechanism to deliver the focus of

attention to a specific region of the image.

The selection mechanism of several models is based on

a Winner-Take-All (WTA) neural network, where just one

neuron is activated by means of a competition among all

neurons in the network. As a result, the winner is a sin-

gle neuron representing a point or a very small area in the

given scene but not a whole object or a whole component.

In this way, it is not possible to delivery the focus of atten-

tion to complex form objects such as linearly non-separable

objects. Moreover, substantial data from biology has sup-

ported that the selection is not only delivery to an specific

region of the visual input but to entire objects or regions

[1, 6]. It has been suggested that the visual system per-

form a type of preattentive segmentation before delivering

the attention to a region of interest. Thus, to build a visual

selection model where the competitive process is performed

by objects and not by single neurons is apparently interest-

ing. For this purpose, the visual attention model must have

a selection mechanism and, at the same time, a way for rep-

resenting objects.

von der Malsburg [7] proposed a mechanism of tempo-

ral correlation as a representational framework. This theory

suggested that objects are represented by the temporal cor-

relation of the firing activities of spatially distributed neu-

rons coding different features of an object. Inspired by bi-

ological findings and von der Masburg’s brain correlation

theory, Wang and his collaborators have developed oscilla-

tory correlation theory [8, 9, 10], which can be described by

the following rule: neurons which process different features

of the same object are synchronized, while neurons which

code different objects are desynchronized. There are two

basic mechanisms working simultaneously in each oscil-

latory correlation model: synchronization and desynchro-
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nization. The former serves to group neurons into objects

while the latter serves to distinguish one group of synchro-

nized neurons (an object) from another. Oscillatory corre-

lation theory has been extended and successfully applied

to various tasks of scene analysis, such as image segmen-

tation, motion determination, auditory signal segregation,

and perception ([11] and references there in). Oscillatory

correlation models have also been used to perform object

selection [6]. This model [6] besides providing a temporal

segmentation of the objects in the input image also provides

a mechanism to perform object selection where the largest

object keeps firing while the other remain silent. Although

this model provides an interesting mechanism of competi-

tion among objects, it just considers the size as a salient

feature.

In this paper, we propose an oscillatory correlation

model for visual selection built on a network of Integrate

and Fire neurons (I&F) with cooperative short-range con-

nections and competitive long-range connections. In our

model, as the system runs, each group of neurons repre-

senting an object of a visual input is synchronized due to

the cooperative connections among neighbor neurons. At

the same time, a competition mechanism is introduced by

long-range connections among neurons. By means of such a

competition mechanism, firing frequencies of neurons rep-

resenting the salient object are increased, while frequencies

of those neurons representing background objects are de-

creased. As a result, the neurons representing the salient

object will keep firing and other neurons will slow down

their firing activities until becoming silent. Another nov-

elty of the proposed model is that a combination of several

visual attributes, such as intensity, contrast of colors and

orientations are considered. These features are among the

most relevant features used by the visual system to guide the

search for a visual target [12] and biological findings show

that the perceptual system might encode contrast of features

rather than the absolute level of them [13].

The rest of the paper is organized as follows. Section 2 is

devoted to the model description. Section 3 presents com-

puter simulation results and Section 4 concludes the paper.

2. Model Description

The visual selection model presented in this paper is

formed by a 2D network of I&F neurons with two types

of connections: excitatory short-range connections and in-

hibitory long-range connections. Excitatory connections

are employed to synchronize group of neurons representing

a coherent object. Inhibitory connections are responsible to

desynchronize different groups of neurons (segmentation)

and also to inhibit background objects permitting the salient

object to be highlighted.

The network of I&F neurons is defined by the following

equation:

dvi

dt
= −vi + Ii(t) + Ei(t) − Yi(t) (1)

where vi is the neuron potential, Ii defines the external stim-

ulation responsible for controlling the firing frequency of

neuron i, Ei(t) defines the excitatory coupling and Yi(t)
defines the inhibitory coupling among neurons. The neuron

i fires every time that vi ≥ θ, where θ is the firing thresh-

old. Without the coupling terms Ei(t) and Yi(t), and taking

Ii(t) as a constant, Eq. (1) is a standard I&F neuron.

The excitatory coupling term Ei(t) is defined by:

Ei(t) =
∑
j∈Δi

ωijδ(t − tj) (2)

where δ is the Dirac delta function, tj represents the in-

stant when neuron j fires, Δi defines the excitatory coop-

eration neighborhood of neuron i, which consists of the 8
nearest neighbors of neuron i. ωij is the excitatory coupling

strength between neurons i and j and it is defined by:

ωij =
cE

|Δi| (3)

where cE ∈ [0, 1] is a constant and |Δi| is the number of

neurons in Δi. If we take the excitatory connection as a

graph, |Δi| represents the degree of neuron i.
The inhibitory coupling term is defined by:

Yi(t) =
∑
j∈Λi

σijδ(t − tj) (4)

where Λi defines the competition neighborhood of neuron i
and σij is the inhibitory coupling strength between neurons

i and j, which is defined by the following equation:

σij = cY exp

(
−

∑
k

ck
ijf

k
ij

)
(5)

where cY ∈ [0, 1] is a constant, fk
ij and ck

ij (k ∈ [1, n]) rep-

resent the contrast of the feature k (intensity, color or orien-

tation) and its weight, respectively. The contrast is defined

as the absolute difference of the feature k between neuron i
and j, i.e.,

fk
ij = |fk

i − fk
j | (6)

In order to perform the visual selection of an object we

introduce a mechanism to control the firing frequency of

each neuron. The frequency is increased if the neuron is

part of the salient object otherwise it is decreased. This is

realized by modeling the Ii(t) term of Eq. (1). Each time a

neuron i fires, it increases the value of its own Ii(t) by the

following equation:

Ii(t) = cI(Imax − Ii(t − 1)) (7)
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where cI and Imax are constants which defines the poten-

tial gain factor and the maximum value that Ii(t) can hold,

respectively.

To decrease the value of Ii(t) we consider the following

equation:

Ij(t) = cY (Imin − Ij(t − 1)) (8)

where cY is the same inhibitory coupling strength constant

defined in Eq. (5) and Imin is the minimum value that Ij(t)
can hold. Each time a neuron j receives an inhibition signal

from a neuron i, its Ij(t) value is decreased according to

Eq. (8). Considering the firing threshold θ = 1, if Ij(t) <
1 the neuron j stopping firing and remains silent. Due to

these properties, only the neurons representing the salient

object continue firing while the others are slowed down until

becoming silent.

According to the input image pattern, the connections

among neurons are set. The excitatory connections are cre-

ated between neurons with similar input features, it means,

if fk
ij = |fk

i − fk
j | < θk the neurons i and j are connected,

this process is done for the 8 nearest neighbors j of the neu-

ron i. Based on these cooperative connections, neighbor

neurons with similar inputs will synchronize and the trajec-

tory of these neurons will represent a unique object of the

input image.

The long-range inhibitory connections are defined based

on the contrast of the input features (Eqn. 6). For example,

if two neurons i and j have similar attributes, the fk
ij term

will hold a small value and due to the negative exponential

of Eqn. (5), the inhibition between both will have a high

value. The negative exponential of Eqn. (5) has the func-

tion of creating an inhibition signal which is high just when

both neurons have almost the same features; otherwise, they

will not inhibit each other or will do it with a small strength.

Thus, the inhibitory signal is responsible for implementing

the contrast into our model. It is worth noting that this in-

hibitory signal acts even among neighbor neurons, but, due

to the excitatory connections which have a stronger weight,

those neurons remain synchronized.

3. Computer Simulations

Given a static color image as input, each selected feature

is computed using the three features provided by the im-

age pixels: FR, FG, FB , or red, green, and blue channels.

Based on this three features intensity and local orientations

are extracted.

The intensity is computed as FI = (FR + FG + FG)/3.

The local orientations are obtained from FI by means of

the application of a laplacian filter followed by a convolu-

tion with four spatial masks with orientation 0o, 45o, 90o,

and 135o. The neural network is set and the neurons are

integrated using a fourth-order Runge-Kutta Method. For

the excitatory connections just the intensity of pixels are

consider in all experiments. For the inhibitory connec-

tions, all features are taken into account and the following

weights are assumed for each feature: ci
ij = 1.0; cr

ij = 1.0;

cg
ij = 1.0; cb

ij = 1.0; c0o

ij = 0.25; c45o

ij = 0.25; c90o

ij = 0.25;

c135o

ij = 0.25. The network parameters are set as follow:

I0 = 1.1; IMin = 0.9; IMax ∈ {1.6; 2.0}; cE = 0, 2;

cY = 0.03
N , where N is the number of neurons in the net-

work; θk = 0.1.
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Figure 1. (a) Input image; (b) Temporal activ-
ities of neuron blocks. Each trace in the fig-
ure corresponds to a pulse train of an object
in the input pattern.

For all the simulations, the salient object was considered

to be the one which shows the largest contrast to the back-

ground objects. This assumption matches well with bio-

logical findings supporting that the contrast of features is

highly used by the visual perception system to perform vi-

sual searching tasks [12, 13]. Figure 1(a) shows the input

image used to check our model with contrast of color. Here,

the red object seems to pop-out from the background com-
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Figure 2. (a) Input image; (b) Temporal activ-
ities of neuron blocks. Each trace in the fig-
ure corresponds to a pulse train of an object
in the input pattern.

posed of tones of blue objects becoming the salient one. In

Figure 1(b) is presented the time series of the spiking activ-

ity of some neurons representing all the objects observed in

the input image. Here we can see that, after some cycles,

just one group of neurons remains activity, which is exactly

the group of neurons that represents the red object.

The second simulation was performed using the Figure

2(a) where the orientation defines the most salient object.

The result of this simulation can be seen in Figure 2(b),

where the neurons which remain active represents the ‘X’

pattern. A more complex simulation was performed using

Figure 3(a). In this figure, the salient object, it means, the

object which contrast most with the others does not seem

to pop-out from the background easily. It happens because

there is no unique feature that defines this object. Here, the

salient object is defined based on a conjunction of features

(color and orientation), named conjunction search. For ex-

ample, we can say that, first, our attention is directed to the

red objects and then another process based on orientation

guides our attention to the red ‘X’ object, which is the one

whose shape/color differs most from the background ob-

jects. However, our network does not perform this type of

serial selection for an specific feature but realizes a paral-

lel competition among all presented features. It means, due

to the differences between orientation and color of the red

‘X’ against the others, the red ‘X’ object is select because

it receives, on average, less inhibitory signal than the other

objects. In Figure 3(b), we can see that just one group of

neurons remains active during the simulation and this group

is the one that represents the red ‘X’ object.

A final experiment was performed in order to check the

proposed model with real images. In Figure 4(a) we show

the input image which consists of a some green objects and

a orange fruit. Due to the background color similarity, the

fruit seems to pop-out becoming the selected object. In Fig-

ure 4(b) we can see that after some iterations, just the neu-

rons representing the orange fruit remains active.
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Figure 3. (a) Input image; (b) Temporal activ-
ities of neuron blocks. Each trace in the fig-
ure corresponds to a pulse train of an object
in the input pattern.
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Figure 4. (a) Input image; (b) Temporal activi-
ties of neurons representing the background
objects and the salient object.

4. Conclusions

This paper presents a visual attention mechanism real-

ized by a network of integrate and fire neurons. The com-

bination of contrast of features of an input image, such as

intensity, color and orientation are considered to stimulate

the corresponding neurons in the network. The local con-

nections among neighbor neurons serve to synchronize neu-

rons representing a coherent object in a given input image,

while those long-range coupling terms have a function to

select the salient object by inhibiting distracters, i.e., lower

the contrast between an object and other part of the input

image is, stronger the inhibitory signals the corresponding

neurons receive.

Computer simulations show that the model is able to

select the most salient object in an input image based on

the contrast of features. The results obtained by our model

matches well with biological experiments with humans con-

sidering the correct object selection though quantitative

analysis considering the reaction time needed to select the

salient object were still not taken into account.

Another interesting point of our modeling is related with

the Eq. (5), where it is easy to insert top-down mechanism

by controlling the weights of each input feature. In this way,

one can facilitate the selection of specific group of features

changing their respective weights.
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