
1

Particle Competition and Cooperation in
Networks for Semi-Supervised Learning

Fabricio Breve, Member, IEEE, Liang Zhao, Member, IEEE, Marcos Quiles, Member, IEEE,
Witold Pedrycz, Fellow, IEEE, and Jiming Liu, Senior Member, IEEE

Abstract—Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where
only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model
is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate
class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e.,
each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied
by particles of other classes. In this way, a “divide-and-conquer” effect is naturally embedded in the model. As a result, the proposed
model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based
semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification
of the performance of the method.

Index Terms—Semi-Supervised Learning, Particles Competition and Cooperation, Network-Based Methods, Label Propagation.

F

1 INTRODUCTION

S EMI-SUPERVISED learning has received increasing in-
terest in the recent years. It is one of the classes of ma-

chine learning techniques lying between the two major
categories: supervised learning and unsupervised learning.
In supervised learning, an algorithm learns a function
from the training data, which consists of pairs of data
items and their respective labels, so after being learnt
from a number of training examples, the algorithm can
predict the labels of new datum. On the other hand, in
unsupervised learning, all data items are unlabeled and
the objective is to determine their intrinsic structure. One
form of unsupervised learning is clustering where we
partition a data set into subsets (clusters), so that data
in the same cluster share some commonalities. Machine
learning algorithms have been successfully applied to
solve many practical problems such as data mining, pat-
tern recognition, bioinformatics, time-series prediction
and others [1], [2], [3], [4], [5], [6].

Nowadays, data sets under processing become larger
and larger. In many situations only a small subset of

• F. Breve and L. Zhao are with the Department of Computation, Institute of
Mathematics and Computer Science, University of São Paulo, São Carlos,
SP, Brazil, 13560-970.
E-mail: {fabricio,zhao}@icmc.usp.br

• M. Quiles is with the Department of Science and Technology (DCT),
Federal University of São Paulo (Unifesp), São José dos Campos, SP, Brazil.
E-mail: quiles@unifesp.br

• W. Pedrycz is with the Department of Electrical and Computer Engineer-
ing, University of Alberta, Edmonton, AB, T6R 2V4, Canada and Systems
Research Institute, Polish Academy of Sciences, Warsaw, Poland
E-mail: pedrycz@ee.ualberta.ca

• J. Liu is with the Computer Science Department, Hong Kong Baptist
University, Kowloon, Hong Kong
E-mail: jiming@comp.hkbu.edu.hk

data items can be effectively labeled. This is because
the labeling process is often expensive, time consuming,
and requires intensive human involvement. As a result,
partially labeled data sets become more frequently en-
countered. Supervised learning techniques cannot han-
dle this kind of problems because they assume all or
almost all data items are labeled for the training process.
On the other hand, unsupervised learning techniques
ignore label information of the data items. Therefore,
in such cases semi-supervised learning methods are of
interest. They addresses the specificity of the problem by
combining a few labeled data items with a large number
of unlabeled data to produce better classifiers while
requiring less human effort [7], [8]. In the following,
we will give a review of semi-supervised methods, in-
cluding the graph-based category, in which the proposed
method is included.

1.1 Related Work
Semi-supervised methods include generative models [9],
[10], cluster-and-label techniques [11], [12], co-training
and tri-training techniques [13], [14], [15], [16], low-
density separation models, like Transductive Support
Vector Machines (TSVM) [17], and graph-based methods,
like Mincut [18], Local and Global Consistency [19], Lo-
cal Learning Regularization [20], Local and Global Reg-
ularization [21], random walk techniques [22], [23], [24],
and label propagation techniques [25], [26]. Recently, a
link was established between the two major categories
of semi-supervised learning approaches (graph-based
methods and co-tri-training) [27].

Traditional semi-supervised techniques, such as Trans-
ductive Support Vector Machine (TSVM) [17], can iden-
tify data classes of well defined forms, but usually fail

2

to identify classes of irregular forms. Thus, assumptions
on class distribution have to be made and unfortunately
such class distribution is usually unknown a priori.
For the last years, many graph based methods have
been developed. Most of them share the regularization
framework, differing only in the particular choice of the
loss function and the regularizer [18], [19], [28], [29], [30],
[31]. The main advantage of graph-based methods is the
ability of identifying classes of different distributions.
Recently, some methods inspired in physics concepts
were presented. Wang et. al. proposed a semi-supervised
learning method by considering each data point as an
Ising spin and the labeling process of the data points is
the determination of the directions of the corresponding
spins [32]. Getz et. al. developed another method based
on statistical physics [33]. In their work, they estimate the
distribution of classifications and yields more accurate
and robust results. Wang and Zhang proposed a semi-
supervised learning approach based on electrostatic field
model. In their model, they treat the labeled data points
as point charges, the unlabeled data points are placed in
the electrostatic fields generated by these charges and the
labeling process is considered as the electric potentials of
the electrostatic field at their corresponding places [34].
Although many graph-based semi-supervised learning
methods have been developed, most of them have a high
order of computational complexity (O(n3)), making their
applicability limited to small or middle size data sets
[7]. As data sets get larger and larger, the development
of efficient semi-supervised learning methods is still
meaningful. An interesting graph-based work to treat
large scale data set is presented in [35], in which a
set of anchor points are firstly determined, a sparse
adjacency matrix is designed and, then the learning is
conducted by graph regularization. Such an adjacency
matrix generating method is a general framework for
graph construction, which can be used in various graph-
based semi-supervised learning methods, including the
method proposed in this paper, to improve their effi-
ciency.

With the emergence of the complex network field,
the study of large networks with non-trivial topological
structures, such as computer networks, transportation
networks, social networks, and biological networks [36],
[37], triggers much interests by researchers. Many of
these networks are found to be divided naturally into
communities or modules, thus discovering of these com-
munities structure became one of the main issues in
complex network study (see [38], [39] and references
there in). Among many community detection techniques,
the particle competition approach proposed in [40] is
strongly related to this work. In that model, particles
walk in the network and compete with each other in
such a way that each of them tries to possess as many
nodes as possible. At the same time, each particle pre-
vents other particles to invade its territory. Finally, each
particle is confined inside a network community.

1.2 Contributions

In this paper, we present semi-supervised learning tech-
nique based on particle competition and cooperation
in the network constructed from the input data set
[40]. Among several other improvements, in the present
model competitive and cooperative mechanisms are in-
troduced and combined in a unique scheme. Particles of
the same class proceed in the network in a cooperative
manner to propagate their labels. Particles of different
classes compete with each other to determine class bor-
ders.

The proposed semi-supervised learning method is fun-
damentally different from other graph-based techniques
in the following way. Traditional graph-based semi-
supervised learning techniques spread labels in a global
fashion, i.e., at each time step the label information is
propagated from all nodes to all other nodes accordingly
to the edge weights. In contrast, the technique pro-
posed in this paper is based on the particle competition-
collaboration approach and it has a local spreading
fashion in the network, i.e., at each time step, each
particle spreads its label to a neighbor node chosen by
the random-greedy rule. In other words, the label prop-
agation approaches used by other graph-based methods
manipulate all nodes of the network at each iteration,
including those nodes which are already correctly la-
beled and do not need any modification. In the proposed
method, due to the competition mechanism, each parti-
cle only visits a portion of nodes potentially belonging
to the current particle or its teammates, while it is not
allowed to visit those nodes definitely occupied by other
teams of particles. It can be roughly understood that our
method has a “divide-and-conquer” effect embedded in
the competition-cooperation scheme. In this way, each
particle walks only in a sub-network and many long-
range redundant operations are avoided. As a result, the
proposed method has a lower computational complexity
order as will be shown later. Computer experiments offer
a detailed numeric insight into the performance of the
method.

As occurred in any semi-supervised learning algo-
rithm, more labeled data items are provided, higher pre-
cision of data class detection can be achieved. However,
there is a difference between the proposed method and
many other semi-supervised learning methods. The pro-
posed method without particle cooperation (with only
particle competition mechanism) is already a network-
based data clustering technique. It means that even
without any labeled data, it can be used to detect
data clusters (corresponding to data classes in semi-
supervised learning) with a good precision. On the other
hand, many other semi-supervised learning techniques
are modeled in such a way that they explicitly depend on
the labeled data. For example, in [19], the conformation
to labeled data in the label propagation process is explic-
itly represented by one of the two terms of the energy
function to be minimized. Thus, other techniques have

3

stronger dependence on the percentage of labeled data
than the proposed method. In other words, our approach
aggregates the advantage of underlying data clustering
and label propagation methods. As a result, the proposed
method has less degradation in term of class detection
accuracy rate than other methods when less data items
are labeled.

1.3 Organization
The remainder of this paper is organized as follows:
Section 2 describes the proposed model in detail. In
Section 3 we analyze the computational and storage
complexity of the proposed model. Section 4 covers some
results of computer experimentation. Finally, in Section
5 we draw some conclusions.

2 MODEL DESCRIPTION

In this section, we introduce a network based semi-
supervised learning algorithm. Firstly, the input data set
is transformed to an undirected unweighed network by
using the rules presented in Subsection 2.1. Then, a set
of particles, each of them representing a labeled data
item, are put in the network. The subset of particles
having the same label is called a team. Each node in
the network possesses a vector of elements with each
of them representing a domination level of each parti-
cle team. As the system runs, each particle chooses a
neighbor node to visit by using the combined random-
greedy rule (Subsection 2.3). At the target node (the node
being visited), the domination level of the team of the
current particle is increased, while the domination levels
of other teams are decreased. Each team of particles tries
to dominate as many nodes as possible in a cooperative
way and at the same time prevent intrusion of particles
of other teams. The node and particle updating rules
are presented in Subsection 2.2. In Subsection 2.4 we
discuss a stop criterion. At the end of iterative process,
each unlabeled data item is labeled by the team with
the highest domination level. Finally, a label propagation
algorithm based on the particle cooperation-competition
is presented in Subsection 2.5.

2.1 Initial Configuration
Given a data set χ = {x1, x2, . . . , xl, xl+1, . . . , xn} ⊂ Rm

and the corresponding label set L = {1, 2, . . . , c}, the first
l points xi(i ≤ l) are labeled as yi ∈ L and the remaining
points xu(l < u ≤ n) are left unlabeled, i.e, yu = ∅.
The goal is to assign a label to each of these unlabeled
samples.

Firstly, we show the network formation for a given
data set. Define a graph G = (V,E). V = {v1, v2, . . . , vn}
is the set of nodes, where each one vi corresponds to a
sample xi. E is the set of links (vi, vj), which can be
represented by an adjacency matrix W:

Wij =

{
1 if ||xi − xj ||2 ≤ σ and i ̸= j

0 if ||xi − xj ||2 > σ or i = j
, (1)

where Wij specifies whether there is an edge between
the pair of nodes xi and xj . σ is a threshold which
defines the maximum distance between xi and xj at
which the nodes vi and vj can be connected, and ||.||
is a distance function. In this paper, we have used the
Euclidean distance in all computer simulations.

Another method for building the adjacency matrix
is connecting each node vi to its k-nearest neighbors,
therefore:

Wij =

1 if xj is among the k-nearest

neighbors of xi or vice-versa
0 otherwise

. (2)

For each labeled data xi ∈ {x1, x2, . . . , xl} or its
corresponding node in the network vi ∈ {v1, v2, . . . , vl},
a particle ρi ∈ {ρ1, ρ2, . . . , ρl} is generated and its initial
position is at vi. Therefore, the number of particles is
equal to the number of labeled sample in the data set.
For simplicity, we call the node vi is the home node of
particle ρi if vi is the initial position of particle ρi. Each
particle changes its position at each iteration and the
distance from its home node is registered. Each subset
of particles generated from the samples with the same
class labels form a team, collaborating with each other
and competing with particles from other teams.

In this model, there are two types of dynamics: particle
dynamics and node dynamics. Each particle ρj comes
with two variables: ρωj (t) and ρdj (t). The first variable
ρωj (t) ∈ [0, 1] is the particle strength characterizing
how much the particle can dominate a node at time
t. The second variable is a distance table, i.e., a vector
ρdj (t) = {ρd1

i (t), ρd2
i (t), . . . , ρdn

i (t)}, where each element
ρdi
j (t) ∈ [0, n−1] corresponds to the distance measured

between the particle’s home node vj and the node vi
(current position of particle ρj).

Each node vi has one vector variable vω
i (t) =

{vω1
i (t), vω2

i (t), . . . , vωc
i (t)}, a vector of the same size of

L, where each element vωℓ
i (t) ∈ [0, 1] corresponds to the

level of domination of team ℓ over node vi. The sum of
the domination levels of each node is always constant,
because a particle increases the node domination level of
its own team and, at the same time, decreases the other
teams’ domination levels. Thus, the following relation-
ship holds:

c∑
ℓ=1

vωℓ
i = 1. (3)

The initial level of domination vector vω
i of each node

vi is set as follows:

vωℓ
i (0) =

1 if yi = ℓ

0 if yi ̸= ℓ and yi ∈ L
1
c if yi = ∅

, (4)

The initial domination level of each node defined by Eq.
(4) can be understood by the following way: 1) For each
node corresponding to a labeled data, the domination
level of the dominating team is set to the highest value

4

1, while the domination levels of other teams are set to
the lowest value 0. 2) For each node corresponding to
an unlabeled sample, the domination levels of all particle
teams are set to the same value 1

c , where c is the number
of classes or number of teams of particles. An illustration
of the initial domination level configuration is shown by
Fig. 1a.

The initial position of each particle is set to its home
node and the respective initial strength is set as follows:

ρωj (0) = 1, (5)

i.e., each particle starts walking with maximum strength.
Finally, the distance table of each particle is initially

set as follows:

ρdi
j (t) =

{
0 if i = j

n− 1 if i ̸= j
, (6)

which means the particles only know the distances to the
nodes they already visited or targeted; these distances
are recalculated dynamically at each particle movement.
Therefore, initially, all the distances are assumed to be
the largest possible value n − 1, except, of course, for
the distance from its home node, which is zero at the
beginning.

2.2 Node and Particle Dynamics
Regarding the node dynamics, at iteration t, each par-
ticle selects a target neighbor node to visit and each
node holds a vector where each element represents the
domination level of a particle team. Particles of different
teams compete for owning the network nodes, thus a
particle will increase the domination level of its team
in the target node, at the same time it will decrease the
domination level of the other teams in this same node.
The exception are the labeled nodes, which domination
levels are fixed. Therefore, for each selected target node
vi, the domination level vωℓ

i (t) is updated as follows:

vωℓ
i (t+ 1) =

max{0, vωℓ
i (t)− ∆vρ

ω
j (t)

c−1 }
if yi = ∅ and ℓ ̸= ρfj

vωℓ
i (t) +

∑
q ̸=ℓ v

ωq

i (t)− v
ωq

i (t+ 1)

if yi = ∅ and ℓ = ρfj
vωℓ
i (t) if yi ∈ L

, (7)

where 0 < ∆v ≤ 1 is a parameter to control changing rate
of the domination levels and ρfj represents the class label
of particle ρj . If ∆v takes a low value, the node domina-
tion levels change slowly, while if it takes a high value,
the node domination levels change quickly. Each particle
ρj increases the domination level of its team (vωℓ

i , ℓ = ρfj)
at the node vi which it is targeting, while it decreases
the domination levels of this same node of other teams
(vωℓ

i , ℓ ̸= ρfj), always respecting the conservation law
defined by Eq. (3). The domination level of all labeled
node vωi are always fixed, this situation is defined by
the third case expressed by Eq. (7). Figure 1d illustrates

what happens to the domination levels when a particle
visits a node corresponding to an unlabeled sample.

Regarding the particle dynamics, a particle will get
stronger when it is targeting a node being dominated by
its own team and it will get weaker when it is targeting a
node dominated by other teams. Thus, at each iteration
t, a particle strength ρωj (t) is updated as follows:

ρωj (t+ 1) = vωℓ
i (t+ 1), (8)

where vi is the target node, and ℓ = ρfj , i.e., ℓ is the class
label of particle ρj . Therefore, each particle ρj has its
strength ρωj set to the value of its team domination level
v
ωj

i of the node vi. In this sense, a particle gets strong if it
visits a node with high domination level of its own team.
This situation is illustrated by Fig. 1b, where a particle
of “red” team is targeting a node dominated by the same
team. Consequently, the particle’s strength is increased.
On the other hand, a particle will be weakened if it
tries to invade a node dominated by another team.
This behavior is illustrated by Fig. 1c, where a particle
of “red” team is targeting a node dominated by the
“yellow” team. In this case, the particle’s strength is
reduced.

The distance table is introduced in order to keep the
particle aware of how far it is from its home node, so
it will not go too far away, which would let its neigh-
borhood susceptible to be attacked by other particles.
The distances together with the domination levels will
prevent the particle from losing all its strength when
walking into enemies’ neighborhoods and at the same
time it will keep them around to protect their own
neighborhood. Each particle ρj updates its distance table
ρdk
j (t) at each iteration t as follows:

ρdk
j (t+ 1) =

{
ρdi
j (t) + 1 if ρdi

j (t) + 1 < ρdk
j (t)

ρdk
j (t) otherwise

, (9)

where ρdi
j (t) and ρdk

j (t) are the distances to its home node
from the current node and the target node, respectively.

The distance calculation is simple: we assume that
the particles initially have limited knowledge of the net-
work, i.e., they know how many nodes in the network,
but they do not know how the nodes are connected, so
they assume all the nodes can be reached in at most n−1
steps (the largest possible distance). Every time a particle
moves from a current node to a target node, it checks
the current distance table. If the target node distance is
higher than the current node distance, the target node
distance is updated to the distance of the current node
plus 1. This method has advantage to use already known
distances without recalculation.

It should be noted that a particle really visits a target
node only if the domination level of its team is higher
than others; otherwise, a shock happens and the particle
stays at the current node until next iteration. This is
the competition mechanism implemented in the present
model.

5

0

0.5

1

0

0.5

1

(a)
0 0,5 1 0 0,5 1

0.1 0.1
0.2

0.6

(b)
0 0,5 1 0 0,5 1

0.1

0.4

0.2
0.3

(c)

0

1

0

1

t

t+1

(d)

Greedy Moving
Probabilities

Random Moving
Probabilities

35%

18%

47%

33%

33%

33%

v1

v2

v3

v4

v2
v3

v4

v2

v3

v4

0.1 0.1
0.2

0.6

0.4

0.2
0.3

0.1

0.8

0.1
0.0

0.1

(e)

Fig. 1. Illustrations of node and particle dynamics. (a) initial domination levels for a node corresponding to a labeled
sample (left) and an unlabeled node (right) in a problem of 4 classes; (b) a particle gets stronger as it is targeting a
node being dominated by its own team; (c) a particle gets weaker as it is targeting a node being dominated by another
team; (d) a particle increases its team domination level in the target node while decreasing domination level of other
teams; (e) node probabilities of being chosen by a particle with greedy and random movement, all candidate nodes
have the same distance from the particle home node.

2.3 Random-Greedy Walk
How does a particle choose a neighbor node to visit?
We introduce two rules governing its behavior: random
walk and greedy walk. In random walk, the particle ran-
domly chooses any neighbor to visit without concerning
domination levels or distance from its home node. This
movement is useful for exploration and acquisition of
new nodes. Meanwhile, in greedy walk, each particle
prefers visiting those nodes that have been already dom-
inated by its own team and that are closer to their home
nodes. This movement is useful for defense of its team’s
territory. The particles should exhibit both movements
in order to achieve an equilibrium between exploratory
and defensive behavior.

Therefore, in random walk the particle ρj tries to move
to any node vi with the probabilities defined as:

p(vi|ρj) =
Wqi∑n

µ=1 Wqµ
, (10)

where q is the index of the current node of particle ρj ,
so Wqi = 1 if there is an edge between the current
node and any node vi, and Wqi = 0 otherwise. In greedy
movement the particle tries to move to a neighbor with
probabilities defined according to its team domination
level on that neighbor ρωℓ

j and inverse of the distance
(ρdi

j) from that neighbor vi to its home node vj by the
following expression,

p(vi|ρj) =
Wqiv

ωℓ
i

1

(1+ρ
di
j

)2∑n
µ=1 Wqµv

ωℓ
i

1

(1+ρ
di
j

)2

. (11)

Again, q is the index of the current node of particle ρj
and ℓ = ρfj , where ρfj is the class label of particle ρj .
Figure 1e illustrates some probabilities calculated using
these rules.

At each iteration, each particle has probability pgrd to
take greedy movement and probability 1 − pgrd to take
random movement, with 0 ≤ pgrd ≤ 1. Once the random
movement or greedy movement is determined, the target
neighbor node ρτj (t) will be chosen with probabilities
defined by Eq. (10) or Eq. (11), respectively.

2.4 Stop Criterion

In most cases, after a sufficient number of steps, the inner
nodes of each class will be completely dominated by
a single team. However, outer nodes will still change
their domination level, even change their domination
team. Therefore, we cannot expect a convergence of all
nodes labels in every cases, so we monitor the aver-
age maximum domination levels of the nodes (⟨vωℓ

i ⟩,
ℓ = argmaxq v

ωq

i) and stop the algorithm when there
is no increasing of this quantity. Really, the number of
iterations required for stabilizing of average maximum
domination levels of all nodes is roughly proportional
to the network size (this will be shown in Section 4),
therefore one can just run the algorithm for a pre-defined
number of steps proportional to the network size. But
notice that network mixture, which is usually unknown
a priori in real-world problems, also affects the amount
of steps. Thus, monitoring the average maximum domi-
nation levels of nodes is a safer and more efficient stop

6

criterion.

2.5 The Algorithm
Overall, the proposed algorithm can be outlined as fol-
lows:

Algorithm 1: Particle Competition and Cooperation
1 Build the adjacent matrix W by using Eq. (1) or (2);
2 Set nodes’ domination levels by using Eq. (4);
3 Set initial positions of particles at their corresponding

home nodes by using Eq. (5);
4 Set particle strength and distance tables by using Eq. (6);
5 repeat
6 for each particle do
7 Select between random or greedy rule with

probability defined by pgrd;
8 Select the target node by using the combined

random-greedy rule described in Subsection 2.3;
9 Update target node domination levels by using

Eq. (7);
10 Update particle strength by using Eq. (8);
11 Update particle distance tables by using Eq. (9);

12 until the stopping criterion is satisfied;
13 Label each unlabeled data item by the team of maximum

level of domination: yi = argmaxℓ v
ωℓ
i (∞);

The particles from the same team collaborate with each
other in the sense that they work together to raise their
domination level on a node in order to raise their team
flag in that node. But they still put the defense of its
neighborhood in the first place, i.e., the nodes around
their home node. However, once a while, they may visit
their team-mates and help them defending their territory,
and they will also eventually receive help from its team-
mates in their own area.

Turning each labeled data point into a particle is also
convenient, as the distribution of labeled nodes among
classes is usually proportional to the distribution of
unlabeled nodes among classes, as the labeled nodes
are usually nodes that were randomly chosen from the
whole data set to be labeled by a specialist.

3 COMPUTATIONAL TIME AND STORAGE
COMPLEXITY

In this section, we provide analysis on the time and
storage complexity order of the algorithm presented in
Subsection 2.5.

3.1 Computational Time Complexity
At the beginning of the algorithm, Steps 1 to 4 are
executed and their execution time is dominated by Step
1: building the adjacent matrix from the input data set.
This step has complexity order O(n2). Step 5 defines a
loop that is repeated until convergence, i.e., the number
of iterations of the algorithm. The order of this quantity
will be determined later. Step 6 is an inner loop and
all the remaining steps (Steps 7 to 12) are inside this

inner loop. In other words, Steps 7 to 12 are actions
to be done by each of the l particles at each iteration.
Specifically, in Step 7 the algorithm chooses between
random or greedy rule for selecting a neighbor for the
particle to visit, which executes in constant time (O(1)).
In Step 8, the algorithm has to calculate probability of
being selected of each neighbor, this operation depends
on the number of neighbors of each node, i.e. its order
of complexity is O(⟨k⟩), where ⟨k⟩ is the average node
degree of the network. Steps 9 to 11 perform updates
to node domination levels, particle strength and particle
distance table respectively, these are only scalar opera-
tions for each particle and each chosen node, thus they
take constant time (O(1)). At this point, we conclude that
each inner loop iteration has order of complexity O(⟨k⟩).
Notice that ⟨k⟩ is defined by the choice of σ or k in Eq.
(1) or Eq. (2), respectively, and it can be controlled to be a
small number (⟨k⟩ ≪ n). Usually, the algorithm has good
classification performance when the network is sparse.
Therefore, the inner loop usually runs in constant time
O(1). However, if the network is not sparse, i.e., ⟨k⟩ is
proportional to n, the inner loop runs at the order of
O(n).

The inner loop (Step 6) should be repeated for each
of the l particles. The number of particles is equal to
the number of labeled data points, which is usually a
small one in semi-supervised learning problems (l ≪ n),
i.e., we consider that l is a constant. Therefore, the
inner loop for all particles runs in constant time O(1).
Finally, the outer loop (Step 5) is repeated until the
average maximum domination levels of nodes (⟨vωℓ

i ⟩,
ℓ = argmaxq v

ωq

i) converge. Consider a network with
some completely separated classes and each class (a
subgraph) has one or more particles. The ownership of
each node can be determined by only one visit, thus the
number of iterations of the outer loop (Step 5) is certainly
O(n) = Cn, where C is a positive constant proportional
to the random level of particle walking. If the classes are
connected but well defined, the ownership of each node
can be determined by a small number of visits. Then,
in order to have all n nodes dominated by particles, the
number of iterations is again O(n) = Cn. For the same
reason, we expect the number of iterations of the outer
loop (Step 5) to be O(n) = Cn, i.e., each of the n nodes
are dominated by a particle through constant times of
visits.

In summary, if average degree ⟨k⟩ of the network is
constant, Steps 5 to 12 run at linear time O(n); if the
average degree is proportional to n, Steps 5 to 12 run at
O(n2). In both cases, the time complexity of the whole
algorithm is determined by Step 1: building the adjacent
matrix from the input data set, which is at O(n2).

Now we provide some experimental results to check
our analysis. In the following simulations, we perform
label propagation by using the proposed algorithm di-
rectly on networks, i.e., Step 1 is not executed. Without
considering Step 1, we expect our algorithm to run at
linear time order. We first generate a set of ramdom

7

clustered networks by using the method proposed by
[38] with increasing sizes (n = {500, 1000, . . . , 5000}).
In this network generation method, pairs of nodes be-
longing to the same class are linked with probability
pin. In each of these networks, the average node degree
⟨k⟩ keeps constant. The zout/⟨k⟩ defines the mixture of
the classes, i.e., as zout/⟨k⟩ increases, the classes become
more and more mixed and harder to be identified. In all
experiments, the nodes are equally divided into c = 4
classes, average node degree is set to ⟨k⟩ = 25, and the
labeled nodes subset size is set to l = 50, with their
components randomly chosen. The proposed algorithm
is executed on these networks measuring the number of
iterations and time needed to achieve the convergence
of average maximum domination levels of nodes (⟨vωℓ

i ⟩,
ℓ = argmaxq v

ωq

i), this stop criterion has been explained
in Section 2.4. Time is measured in a regular desktop
computer with an Intel Core 2 Quad Processor model
Q9450 and 4GB of RAM. The algorithm is implemented
by using MATLAB. The parameters are set to pgrd = 0.70
and ∆v = 0.35, which usually present good results,
as it will be shown in Subsection 4.1. The results are
shown in Figs. 2a and 2b for networks with medium
(zout/⟨k⟩ = 0.2) and high (zout/⟨k⟩ = 0.4) network mix-
tures, respectively. By analyzing these figures, we notice
that the amount of iterations and the time increases
linearly as the network size increases, which confirm our
analysis.

Our analysis shows that the order of time complexity
of the proposed algorithm is at most O(n2). This fea-
ture is quite attractive because most graph-based semi-
supervised methods have cubic complexity order, that
is O(n3) [7]. This is because that graph-based methods
usually have a global label propagation mechanism, i.e.,
at each iteration all nodes of the graph are updated
by predefined rules, leading to matrix operations with
cubic computational complexity. The proposed method
is unique in the sense that it propagates the labels locally
due to particle competition, avoiding many unnecessary
walking or visits.

In order to further verify the above complexity anal-
ysis, we compare the execution time between the pro-
posed method and other three representative graph-
based methods. In these simulations, we use a sequence
of artificial data sets with increasing sizes and the ele-
ments of each data set are equally divided into 4 nor-
mally distributed classes (Gaussian distribution). These
data sets are generated by using function gauss from
PRTools [41]. The Gaussian kernels are positioned in
coordinates (−2,−2), (−2,+2), (+2,+2), and (+2,+2).
Other parameters are set to the default values of the
tool. For each generated data set, four graph-based
semi-supervised methods are applied: Local and Global
Consistency (LGC) [19], Label Propagation (LP) [25],
Linear Neighborhood Propagation (LNP) [26], and the
proposed method. For LGC and LNP, we have fixed
α = 0.99, as done in [19] and [26], respectively. The other
parameters are set empirically, for LGC and LP, σ = 3;

and for LNP and the proposed method k = 25. For the
proposed method, graphs are built by using Eq. (2). The
execution time results are shown in Fig. 3, and each point
is an average of at least 20 realizations. All of the four
algorithms are run by using a desktop computer with
an Intel Core 2 Quad Processor model Q9450 and 4GB
of RAM. These results show that the proposed method
runs much faster than the others.

3.2 Storage Complexity

Regarding the memory requirements and storage com-
plexity, the proposed algorithm uses the following data
structures: the adjacency matrix used to represent the
graph, the distance tables, and the nodes domination
levels. The adjacency matrix has n2 size, however the
proposed method has the advantage of working with
sparse non-weighted networks, which can be imple-
mented by using linked lists of binary variables to save
memory space. The average node degree ⟨k⟩ is defined
by the choice of σ or k in Eq. (1) or Eq. (2), respectively,
and it is usually a small number (⟨k⟩ ≪ n). Therefore,
we can consider that adjacency matrix implemented
through linked lists grows only linearly as a function
of the network size, i.e., O(n). The particles distances
tables can be implemented using a single n.l matrix of
unsigned integers, however it is unlikely that a particle
will visit all the nodes in a network. Usually, each
particle will visit only a small subset of the nodes during
the whole execution. Therefore we do not need to store
the distances for nodes that were never visited. This
leads to a sparse distance matrix, which can also be
implemented using linked lists to save memory space.
The amount of labeled samples l, and therefore the
number of particles, is also generally much smaller than
the network size (l ≪ n), therefore it is O(n) as well.
Finally, the nodes domination levels can be implemented
using a single matrix with size n.c, in which the number
of classes is much smaller than the network size (c ≪ n),
i.e., O(n). In addition, three other structures are stored
using single vectors: node labels with n size and particle
strength and position, both with l size. Most graph-
based algorithms use non-sparse weighted networks and
thus have quadratic storage complexity, i.e. O(n2). By
analyzing the variables in our algorithm we can notice
that the storage complexity will be no higher than O(n2)
in the worst scenario, and it is going to be only O(n) in
most practical cases.

4 COMPUTER SIMULATIONS

In this section, we present some experimental results by
using the proposed algorithm. Firstly, we study how the
parameters influence the performance of the algorithm
(Subsection 4.1) and temporal dynamics of nodes and
particles (Subsection 4.2). Then, some simulation results
of semi-supervised classification tasks by applying the
proposed model to some toy data sets with different

8

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

4

Network Size (n)

It
er

a
ti

o
n
s

(t
)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

Network Size (n)

T
im

e
(s

ec
o
n
d
s)

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Network Size (n)

It
er

a
ti

o
n
s

(t
)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

Network Size (n)
T

im
e

(s
ec

o
n
d
s)

(b)

Fig. 2. Number of iterations (left) and time (right) required to the convergence of average maximum domination levels
of nodes (⟨vωℓ

i ⟩, ℓ = argmaxq v
ωq

i) with increasing network size (n), l = 50 and ⟨k⟩ = 25. (a) zout = 5, zout/⟨k⟩ = 0.2;
(b) zout/⟨k⟩ = 0.4. Each point in the trace is averaged by 200 realizations. The error bars represent the maximum and
minimum values.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

Data Set Size (n)

T
im

e
(s

ec
o
n
d
s)

Local and Global Consistency

Label Propagation

Linear Neighborhood Propagation

The Proposed Method

Fig. 3. Execution time of four graph-based semi-
supervised classification methods, including the proposed
method, to classify a sequence of artificial data sets with
4 normally distributed classes and with increasing sizes.

data distributions is presented in Subsection 4.3. Exper-
iments with some artificial and real-world data sets are
presented in Subsection 4.4, these results are compared
to those obtained with state-of-the-art methods applied
to the same data sets.

4.1 Parameter Selection
In this section, we present some computer simulations in
order to find out how the parameters pgrd and ∆v affects

the algorithm’s performance. We use networks with
different mixtures and connectivity, which are generated
using the method proposed by [38], already explained
on Section 3.

In the first set of experiments, we generate networks
with increasing mixture, zout/⟨k⟩ = {0.250, 0.375, 0.500},
while we keep both the network size n = 128 and
average node degree ⟨k⟩ = 16 constant. All nodes
are equally divided into c = 4 classes. 10% of the
nodes are randomly selected and presented to the al-
gorithm with their respective labels while the others
are unlabeled. We impose at least one labeled node
per class. The parameters are tested with increasing
values pgrd = {0.00, 0.05, 0.10, . . . , 1.00} and ∆v =
{0.05, 0.10, 0.15, . . . , 1.00}. All the 420 combinations are
tested and each of them is repeated 100 times to take an
average. The results are presented in Figs. 4a, 4b and 4c
for zout/⟨k⟩ = 0.250, 0.375 and 0.500 respectively.

By analyzing Fig. 4 we notice that both pgrd = 0 and
pgrd = 1 lead to bad classification rates. Those cases
correspond to complete random walking or complete
greedy walking of particles, respectively, which confirms
that the combination of random-greedy walking can
improve the model’s performance. We also notice that
parameters pgrd and ∆v depend on each other, because as
the pgrd increases, the algorithm reduces its exploration
behavior, therefore a higher value of ∆v is required in

9

p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

(a)
p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

(b)
p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.3

0.35

0.4

0.45

0.5

0.55

(c)

Fig. 4. Correct classification rate ϕ vs. pgrd vs. ∆v for
different network mixture zout/⟨k⟩. (a) zout/⟨k⟩ = 0.250;
(b) zout/⟨k⟩ = 0.375; (c) zout/⟨k⟩ = 0.500. The follow-
ing parameters are held constant in these simulations:
n = 128, c = 4, ⟨k⟩ = 16. Each point is averaged by
100 realizations.

p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

(a)
p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

(b)
p
grd

∆

v

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

(c)

Fig. 5. Correct classification rate ϕ vs. pgrd vs. ∆v for dif-
ferent node average degree ⟨k⟩. (a) ⟨k⟩ = 16; (b) ⟨k⟩ = 24;
(c) ⟨k⟩ = 32. The following parameters are held constant
in these simulations: n = 128, zout/⟨k⟩ = 0.25, c = 4,
⟨k⟩ = n/8. Each point is averaged by 100 realizations.

order to magnify the changes caused by exploratory
movements. By observing Figs. 4a to 4c we notice that
there is a certain area in the parameter space where the
algorithm reaches high classification rates. This area is
quite large when the network mixture is low and it gets
smaller as the network mixture increases, indicating that
a finer tuning of parameters is required when facing a
difficult problem. Interestingly, no matter the increasing
of data mixture, the combination of pgrd and ∆v to get
good classification rate is almost fixed.

In the second set of experiments, we generate net-
works with increasing average node degree, ⟨k⟩ =
{16, 24, 32}, while we keep both the network size n =
128 and mixture zout/⟨k⟩ = 0.250 constant. Number
of classes, labeled subset size, parameter values and
amount of repetitions are the same as in the previous
experiments. The results are presented in Figs. 5a, 5b
and 5c for ⟨k⟩ = 16, 24 and 32 respectively. In this case,
the area in the parameter space where the algorithm has
good performance slightly dislocates to the right, which
means that higher average node degree benefits from
slightly higher pgrd.

From Figs. 4 and 5 we observe that there is an area in
the parameter space around pgrd = 0.70 and ∆v = 0.35
in which the algorithm usually presents good results no
matter mixture or average node degree. Therefore, these
parameter values can be considered in real problems if
there is no time for model selection. Notice that the aver-

age node degree is always known a priori, thus one may
prefer to set parameter values heuristically according to
these measures. If there are sufficient labeled nodes, one
can optimize the parameters by using cross-validation
too.

4.2 Temporal Dynamics
In order to better understand the temporal dynamics
of the model and the importance of the random-greedy
rule, we run another set of experiments. Figures 6a to 6c
shows the temporal evolution of the model for five dif-
ferent values of pgrd (pgrd = {0.00, 0.25, 0.50, 0.75, 1.00}).
In these cases, the algorithm is applied to randomly
generated networks using the method proposed by [38],
as explained in Section 3, with the following parameters:
n = 2048, l = 64, ⟨k⟩ = 64, zout/⟨k⟩ = 0.25, and
∆v = 0.35.

Figure 6a shows the time series of correct detection
rate (ϕ). Here we see that for complete random moving
(pgrd = 0.00) or for complete greedy moving (pgrd = 1.00),
the correct detection rate is low. This phenomenon has
been expected because when pgrd = 0.00, the particles
keep walking randomly all the time and the distance to
their respective home nodes are not taken into account.
In this case, each team of particles still tends to dominate
a class and stay inside it due to the domination levels
and the flags, but there is no guarantee that the particles
will stay in the right classes, i.e., teams may exchange
their territories because they do not have their home
nodes as reference. On the other hand, if only the greedy
rule is applied (pgrd = 1), the results are always poor.
This is because, without the random rule, the particles
are trapped in a small region of the already explored
nodes and they rarely try to explore unknown nodes.
Moreover, once a node has been fully dominated by a
team, other teams will not have chance to visit it, because
the probabilities calculated by Eq. (11) will always be
zero. Therefore, a proper combination of randomness
and determinism is the best alternative where the greedy
rule holds the particles around their respective home
nodes, defending their neighborhood, while the random
rule allows the particles to explore previously unknown
nodes and to compete for nodes dominated by another
team. The complete greedy moving case (pgrd = 1.00)
takes long time to converge and, at the same time, it
gets bad classification results.

Figure 6b shows the average maximum domination
level among all nodes (⟨vωℓ

i ⟩, ℓ = argmaxq v
ωq

i). Here
we see that the domination levels quickly increase at
the beginning and after a number of iterations stay at
an almost constant level. The first stage corresponds to
quick domination of particles to their respective neigh-
borhoods without much competition and the second
stage corresponds to high competition at the nodes near
class borders before they are fully dominated. The ex-
ception is the complete greedy moving case (pgrd = 1.00),
where the average maximum domination level increases
very slowly.

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

φ

pgrd = 0.00

pgrd = 0.25

pgrd = 0.50

pgrd = 0.75

pgrd = 1.00

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

〈v
ω

ℓ
i
〉,

ℓ
=

a
rg

m
a
x

q
v

ω
q

i pgrd = 0.00

pgrd = 0.25

pgrd = 0.50

pgrd = 0.75

pgrd = 1.00

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

〈ρ
ω j
〉

pgrd = 0.00

pgrd = 0.25

pgrd = 0.50

pgrd = 0.75

pgrd = 1.00

(c)

Fig. 6. Time series for different values of pgrd: (a) correct
detection rate (b) nodes’ maximum domination level (c)
average particle strength. Each point is the average of
100 realizations using networks generated by the method
proposed by [38] with the following parameters: n = 2048,
l = 64, ⟨k⟩ = 64 and zout/⟨k⟩ = 0.25.

Finally, Figure 6c shows the time series of average
particle strength (⟨ρωj ⟩), we see that the average strength
of the particles gets higher as pgrd increases. This is
because the particles lose their strengthes when they try
to invade nodes dominated by another team, and that
usually happens during random movement. In the com-
plete greedy moving case (pgrd = 1.00) the competition
is low so that the average particle strength is hardly
lowered from one.

4.3 Toy Data Sets

In this section, we apply the proposed method to some
toy data sets with different data distributions, which are
generated by using PRTools [41] and are presented in
Fig. 7, in order to verify the method’s efficacy when
classifying these types of data. The first data set (Fig.
7a) consists of 2, 000 samples divided equally into two
banana-shaped classes, 20 of these samples (1%) are
randomly selected as the pre-labeled subset. The second
data set (Fig. 7b) consists of 1, 000 samples divided
equally into two Highleyman classes, 100 of these sam-
ples (10%) are randomly selected as the pre-labeled
samples. The third data set (Fig. 7c) consists of 1, 200
samples divided into two Lithuanian classes, with 800
and 400 samples respectively, in this case 60 of these
samples (5%) are randomly selected as the pre-labeled
subset. Finally, the forth data set (Figure 7d) consists of
1, 200 samples equally divided into three Gaussian dis-
tributed classes, 24 of these samples (2%) were randomly
selected as the pre-labeled samples. In all experiments
the following parameters were held constant: ∆v = 0.35
and pgrd = 0.70, corresponding to values in the safe range
as described in Section 4.1. The graphs are built from
the data sets by using Eq. (2), with the parameter k
empirically set to k = 20 for all the experiments, except
for the second one where k = 5 is used. The right side
of Fig. 7 shows the final states of label propagation.
We see that good results are obtained in all of the 4
cases, indicating that the proposed algorithm is robust
to process data sets of various distributions.

4.4 Benchmark

In order to measure the performance of the pro-
posed method, we have applied it to 7 standard semi-
supervised data sets1. Some basic information about
these data sets are available at Table 1. For detailed
description about each of them, one can refer to [8].

TABLE 1
Basic Information of the Benchmark Data Sets

Data set Classes Dimension Points Type

g241c 2 241 1500 artificial
g241d 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 imbalanced
COIL 6 241 1500
BCI 2 117 400
Text 2 11,960 1500 sparse

For each data set, there are 10 or 100 labeled data
points, and for each case 12 random splits are performed
in order to partition the data set into labeled and un-
labeled points. It is ensured that each split contains at
least one point from each class. For comparison purpose,

1. Available at http://www.kyb.tuebingen.mpg.de/ssl-book/
benchmarks.html

11

−10 −8 −6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

6

−10 −8 −6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

6

(a)

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

6

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

6

(b)

2 4 6 8 10 12

−10

−8

−6

−4

−2

0

2

4

6

8

10

2 4 6 8 10 12

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−2 0 2 4 6 8 10 12

−2

0

2

4

6

8

−2 0 2 4 6 8 10 12

−2

0

2

4

6

8

(d)

Fig. 7. Classification of toy data sets with: (a) 2, 000
samples divided equally into two banana-shaped classes;
(b) 1, 000 samples divided equally into two Highleyman
classes; (c) 1, 200 samples divided into two Lithuanian
classes, with 800 and 400 samples respectively; (d) 1, 200
samples equally divided into three Gaussian distributed
classes. The input data sets are represented on the left
and the algorithm output are represented on the right.
Circles (red), squares (blue), and lozenges (green) rep-
resent the labeled nodes; small dots (black) represent the
unlabeled nodes.

we have included the classification results of 13 semi-
supervised learning methods presented in [8]. The Near-
est Neighbor (1-NN) and Linear SVM (SVM) [42] are
used as the base line algorithms. The other 11 algorithms
are those that presented the best performance on their
respective category and they are presented in the top
11 lines of Table 2. The detailed configurations of each
method are described in [8]. Besides of these 13 tech-
niques, we have also included other 3 semi-supervised
learning graph-based methods in the comparison, which
can be considered as the techniques of the same sub-
category of the proposed method. These are presented
at the last 3 lines of Table 2.

In these experiments, we have used Eq. (2) to build
graphs from the data sets, therefore we have to deter-

TABLE 2
Semi-Supervised Learning Methods used for

Performance Comparison

Abbreviation Method References

MVU + 1-NN Maximum Variance Unfolding [43], [44]
LEM + 1-NN Laplacian Eigenmaps [45]
QC + CMN Quadratic Criterion and Class Mass Regular-

ization
[29], [46]

Discrete Reg. Discrete Regularization [47]
TSVM Transductive Support Vector Machines [31], [48]
SGT Spectral Graph Transducer [31]
Cluster-Kernel Cluster Kernels [49]
Data-Dep. Reg. Data-Dependent Regularization [50]
LDS Low-Density Separation [48]
Laplacian RLS Laplacian Regularized Least Squares [51]
CHM (normed) Conditional Harmonic Mixing [52]
LGC Local and Global Consistency [19]
LP Label Propagation [25]
LNP Linear Neighborhood Propagation [26]

mine the values of three parameters, namely pgrd and
∆v of the algorithm, and k for building graphs. Since the
parameters of the 13 algorithms (from [8]) in comparison
are optimized, we optimize the parameters of the pro-
posed method too. The optimization is realized by using
the genetic algorithm available in Global Optimization
Toolbox of MATLAB with its default parameters. The
parameters of the proposed algorithm are optimized
over the following range: 0 ≤ pgrd ≤ 1, 0 < ∆v ≤ 1,
1 ≤ k ≤ 100.

The same optimization process is used for the 3 graph-
based methods. For both the LGC and the LP methods, σ
is optimized over the following range: 0 ≤ σ ≤ 100; and
for the LNP method, k is optimized over the following
range: 1 ≤ σ ≤ 100. For the LGC and LNP methods, we
have fixed α = 0.99, as done in [19] and [26], respectively.

Tables 3 and 4 report the average test errors of the 16
methods and the proposed method applied to the data
sets presented in Table 1. The values obtained for the
proposed method are averaged by 200 realizations on
each of the 12 subsets. Tables 3 and 4 show test errors (%)
with 10 and 100 labeled training points respectively. By
observing these results we notice that the performance of
the proposed method is comparable to the state-of-the-
art methods, and interestingly, its performance gets even
better when less labeled training points are provided.
This feature is quite desirable, since semi-supervised
learning usually treats data sets with few labeled data
points.

From Tables 3 and 4, we see that some methods are
among the best for some data sets, but at the same time,
they are among the worst for other data sets. However,
the proposed method is more balanced than all others
and it is well ranked specially in the cases which have
few labeled data. Tables 5 and 6 show performance ranks
for 10 and 100 labeled training points, respectively. We
see that the proposed method has the best average rank
and the lowest standard deviation in the 10 labeled
training points case and it is within the best ones in the
100 labeled training points case. Comparing Table 5 and

12

TABLE 3
Test errors (%) with 10 labeled training points.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12
SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37

MVU + 1-NN 47.15 45.56 14.42 23.34 62.62 47.95 45.32
LEM + 1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44

QC + CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37

TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21
SGT 22.76 18.64 8.92 25.36 - 49.59 29.02

Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72
Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 -

LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68

CHM (normed) 39.03 43.01 14.86 20.53 - 46.90 -
LGC 45.82 44.09 9.89 9.03 63.45 47.09 45.50

LP 42.61 41.93 11.31 14.83 55.82 46.37 49.53
LNP 47.82 46.24 8.58 17.87 55.50 47.65 41.06

Proposed Method 37.57 43.94 9.94 17.44 58.65 47.66 31.15

TABLE 4
Test errors (%) with 100 labeled training points.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 43.93 42.45 3.89 5.81 17.35 48.67 30.11
SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45

MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 47.89 32.83
LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77

QC + CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71
Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00

TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52
SGT 17.41 9.11 2.61 6.80 - 45.03 23.09

Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38
Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 -

LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15
Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57

CHM (normed) 24.82 25.67 3.79 7.65 - 36.03 -
LGC 41.64 40.08 2.72 3.68 45.55 43.50 46.83

LP 30.39 29.22 3.05 6.98 11.14 42.69 40.79
LNP 44.13 38.30 3.27 17.22 11.01 46.22 38.48

Proposed Method 24.20 23.93 2.65 4.65 14.85 44.38 25.03

6, the rank of our technique is a little bit lowered than
others when more labeled data items are provided. It
means that our method depends less on the percentage
of labeled data than other ones. For example, in the
Local and Global Consistency model, the conformation
to labeled data in the label propagation process is explic-
itly represented by one of the two terms of the energy
function to be minimized. For this reason, the techniques
under comparison may have a bigger improvement of
performance than our technique. It is worth to note that
semi-supervised learning usually considers few labeled
data items, since it is usually difficult to obtain labeled
data. In this way, our method represents an advantage.

Finally, we present experimental results of our method
and three representative graph-based methods (LGC, LP,
and LNP) applied to three large real-world data set: the
USPS Handwritten Digit Data Set [53], the Insurance
Company Benchmark (COIL 2000) Data Set [54], and
the Letter Recognition Data Set [55]. These data sets
have 9, 298, 9, 000 and 20, 000 samples, respectively. For
each data set, three different labeled subsets are build by
randomly selecting 1%, 5%, and 10% from the total of

TABLE 5
Ranking of semi-supervised methods with 10 labeled

training points

g2
41

c

g2
41

d

D
ig

it1

U
SP

S

C
O

IL

BC
I

Te
xt

M
ea

n
St

d.
D

ev
.

1-NN 15 14 10 5 8 10 6 9.7 2.99
SVM 13 13 17 13 15 15 13 14.1 1.49

MVU + 1-NN 12 8 11 15 7 6 12 10.1 3.13
LEM + 1-NN 10 5 16 12 12 8 7 10.0 3.70

QC + CMN 6 12 4 2 5 17 9 7.9 5.15
Discrete Reg. 17 15 9 4 9 13 8 10.7 3.57

TSVM 2 16 13 16 14 11 4 10.9 4.15
SGT 1 1 3 17 - 14 2 6.3 6.73

Cluster-Kernel 16 3 15 11 13 7 10 10.7 3.95
Data-Dep. Reg. 7 10 8 9 11 16 - 10.2 2.80

LDS 3 17 14 7 6 12 1 8.6 5.39
Laplacian RLS 9 9 1 10 1 9 5 6.3 3.76

CHM (normed) 5 4 12 14 - 2 - 7.4 5.11
LGC 11 7 5 1 10 3 14 7.3 4.35

LP 8 2 7 3 3 1 15 5.6 4.78
LNP 14 11 2 8 2 4 11 7.4 3.88

Proposed Method 4 6 6 6 4 5 3 4.9 1.16

TABLE 6
Ranking of semi-supervised methods with 100 labeled

training points

g2
41

c

g2
41

d

D
ig

it1

U
SP

S

C
O

IL

BC
I

Te
xt

M
ea

n
St

d.
D

ev
.

1-NN 16 16 14 7 9 17 10 12.7 3.72
SVM 7 6 15 15 11 3 9 9.4 4.42

MVU + 1-NN 14 13 6 9 14 16 12 12.0 3.30
LEM + 1-NN 12 12 16 12 12 10 11 12.1 1.86

QC + CMN 6 9 9 8 2 12 8 7.7 3.00
Discrete Reg. 15 15 5 3 1 15 4 8.3 5.68

TSVM 4 3 17 16 13 2 6 8.7 6.08
SGT 2 2 2 10 - 11 1 4.7 4.36

Cluster-Kernel 1 1 12 14 10 4 5 6.7 4.66
Data-Dep. Reg. 5 11 1 6 5 14 - 7.0 4.59

LDS 3 4 11 5 7 8 2 5.7 2.92
Laplacian RLS 9 8 7 3 6 1 3 5.3 2.51

CHM (normed) 10 7 12 13 - 5 - 9.4 3.35
LGC 13 15 4 1 15 7 15 10.0 5.77

LP 11 10 8 11 4 6 14 9.1 3.29
LNP 17 14 10 17 3 12 13 12.3 4.36

Proposed Method 8 5 3 2 8 9 7 6.0 2.56

elements, respectively. The four algorithms are applied
to each of these configurations of each data set, and
Table 7 report the test errors and execution times of this
experiment. Time is measured in a laptop computer with
an Intel Core i7-840QM Processor and 8GB of RAM. The
algorithms are implemented by using MATLAB. Again,
we see that our method can get good results compared
to the others. Notice that the test system memory is
not sufficient to run the LGC method in the Letter
Recognition Data Set, as it is a large data set and the
algorithm has high memory requirements.

5 CONCLUSIONS

This paper presents a new network-based method
for semi-supervised classification by using combined
random-greedy walking of particles, where each of them

13

TABLE 7
Class detection errors (%) and execution times

(seconds) of four methods applied to large data sets

LGC LP LNP Prop. Method
Error Time Error Time Error Time Error Time

USPS - 10% 3.73 457 7.27 154 12.80 105 4.37 69
USPS - 5% 4.72 456 9.77 243 5.99 107 5.13 76
USPS - 1% 9.38 461 23.77 579 22.54 120 9.29 103
COIL - 10% 7.64 445 8.14 54 11.09 73 5.79 23
COIL - 5% 7.48 443 7.92 59 11.38 68 5.84 28
COIL - 1% 7.36 472 7.16 83 8.03 65 5.94 33
Letter - 10% - - 10.94 2232 24.04 1010 11.74 484
Letter - 5% - - 18.99 1901 33.89 982 16.86 497
Letter - 1% - - 46.94 5495 54.28 1274 39.76 522

corresponds to a labeled data point. Starting from a small
territory corresponding to the few labeled samples, these
particles expand their domain walking in the network,
collaborating each other with the particles of the same
class, and competing to particles of other classes from
intruding their territory.

Due to the competition mechanism, there is a divide-
and-conquer effect embedded in our method. In this
way, the particles are avoided to visit a considerable
quantity of nodes which are definitely belonging to other
teams of particles. In other words, traditional graph-
based semi-supervised learning models spread labels in
a global fashion, while the method proposed in this
paper spread labels in a local fashion. Consequently,
the proposed method has a time complexity lower
than other graph-based models, our analysis shows that
its order of time complexity is at most O(n2), while
most graph-based semi-supervised methods have cu-
bic complexity order (O(n3)) [7]. Therefore, the pro-
posed method can be used to classify larger data sets.
Computer simulations show that the proposed model
is promising for semi-supervised learning, resulting in
good classification accuracy for both synthetic and real-
world data sets, specially in the cases which few labeled
data are available.

ACKNOWLEDGMENTS

This work is supported by the State of São Paulo Re-
search Foundation (FAPESP) and the Brazilian National
Council of Technological and Scientific Development
(CNPq).

REFERENCES
[1] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[2] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.
[3] E. Alpaydin, Introduction to machine learning. MIT Press, 2004.
[4] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan, Data

Mining: A Knowledge Discovery Approach. Springer, 2007.
[5] C. Aggarwal and P. Yu, “A survey of uncertain data algorithms

and applications,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 21, no. 5, pp. 609–623, May 2009.

[6] R. Wolff, K. Bhaduri, and H. Kargupta, “A generic local algorithm
for mining data streams in large distributed systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 4, pp.
465–478, April 2009.

[7] X. Zhu, “Semi-supervised learning literature survey,” Computer
Sciences, University of Wisconsin-Madison, Tech. Rep. 1530, 2005.

[8] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning, ser. Adaptive Computation and Machine Learning.
Cambridge, MA: The MIT Press, 2006.

[9] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell, “Text
classification from labeled and unlabeled documents using em,”
in Machine Learning, vol. 39, 2000, pp. 103–134.

[10] A. Fujino, N. Ueda, and K. Saito, “A hybrid genera-
tive/discriminative approach to semi-supervised classifier de-
sign,” in AAAI-05, Proceedings of the Twentieth National Conference
on Artificial Intelligence, 2005, pp. 764–769.

[11] A. Demiriz, K. P. Bennett, and M. J. Embrechts, “Semi-supervised
clustering using genetic algorithms,” in Proceedings of Artificial
Neural Networks in Engineering (ANNIE-99. ASME Press, 1999,
pp. 809–814.

[12] R. Dara, S. Kremer, and D. Stacey, “Clustering unlabeled data
with soms improves classification of labeled real-world data,”
in Proceedings of the World Congress on Computational Intelligence
(WCCI), 2002, pp. 2237–2242.

[13] A. Blum and T. Mitchell, “Combining labeled and unlabeled
data with co-training,” in COLT: Proceedings of the Workshop on
Computational Learning Theory, 1998, pp. 92–100.

[14] T. M. Mitchell, “The role of unlabeled data in supervised learn-
ing,” in Proceedings of the Sixth International Colloquium on Cognitive
Science, 1999.

[15] Z.-H. Zhou and M. Li, “Tri-training: exploiting unlabeled data
using three classifiers,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 11, pp. 1529–1541, Nov. 2005.

[16] ——, “Semisupervised regression with cotraining-style algo-
rithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 19, no. 11, pp. 1479–1493, Nov. 2007.

[17] V. N. Vapnik, Statistical Learning Theory. New York: Wiley-
Interscience, September 1998.

[18] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of
the Twentieth International Conference on Machine Learning, 2003, pp.
912–919.

[19] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Advances in
Neural Information Processing Systems, vol. 16. MIT Press, 2004,
pp. 321–328.

[20] M. Wu and B. Schölkopf, “Transductive classification via local
learning regularization.” Microtome, 03 2007, pp. 628–635.

[21] F. Wang, T. Li, G. Wang, and C. Zhang, “Semi-supervised clas-
sification using local and global regularization,” in AAAI’08:
Proceedings of the 23rd national conference on Artificial intelligence.
AAAI Press, 2008, pp. 726–731.

[22] M. Szummer and T. Jaakkola, “Partially labeled classification
with markov random walks,” in Advances in Neural Information
Processing Systems, vol. 14, 2002.

[23] L. Grady, “Random walks for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1768–1783, 2006.

[24] M. Maila and J. Shi, “Learning segmentation with random walk,”
in Advances Neural Information Processing Systems, NIPS, 2001.

[25] X. Zhu and Z. Ghahramani, “Learning from labeled and unla-
beled data with label propagation,” Carnegie Mellon University,
Pittsburgh, Tech. Rep. CMU-CALD-02-107, 2002.

[26] F. Wang and C. Zhang, “Label propagation through linear neigh-
borhoods,” IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 1, pp. 55–67, Jan. 2008.

[27] W. Wang and Z.-H. Zhou, “A new analysis of co-training,” in
ICML, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp.
1135–1142.

[28] A. Blum and S. Chawla, “Learning from labeled and unlabeled
data using graph mincuts,” in Proceedings of the Eighteenth Inter-
national Conference on Machine Learning. San Francisco: Morgan
Kaufmann, 2001, pp. 19–26.

[29] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and
semisupervised learning on large graphs,” in Conference on Learn-
ing Theory. Springer, 2004, pp. 624–638.

[30] M. Belkin, N. P., and V. Sindhwani, “On manifold regularization,”
in Proceedings of the Tenth International Workshop on Artificial Intel-
ligence and Statistics (AISTAT 2005), 2005, pp. 17–24.

[31] T. Joachims, “Transductive learning via spectral graph partition-
ing,” in Proceedings of International Conference on Machine Learning.
AAAI Press, 2003, pp. 290–297.

14

[32] F. Wang, S. Wang, C. Zhang, and O. Winther, “Semi-supervised
mean fields,” in AISTATS2007: Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics, San Juan, Puerto
Rico, March 2007.

[33] G. Getz, N. Shental, and E. Domany, “Semi-supervised learning -
a statistical physics approach,” in Proc. of the 22nd ICML Workshop
on Learning with Partially Classified Training Data, Bonn, Germany,
2005.

[34] F. Wang and C. Zhang, “Semi-supervised learning based on
generalized point charge models,” IEEE Transactions on Neural
Networks, vol. 19, no. 7, pp. 1307 – 1311, July 2008.

[35] W. Liu, J. He, and S.-F. Chang, “Large graph construction for
scalable semi-supervised learning,” in ICML, J. Fürnkranz and
T. Joachims, Eds. Omnipress, 2010, pp. 679–686.

[36] M. E. J. Newman, “The structure and function of complex net-
works,” SIAM Review, vol. 45, pp. 167–256.

[37] S. Bornholdt. and H. Schuster, Handbook of Graphs and Networks:
From the Genome to the Internet. Wiley-VCH, 2006.

[38] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechan-
ics: Theory and Experiment, vol. 9, p. P09008, 2005.

[39] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, pp. 75–174, 2010.

[40] M. G. Quiles, L. Zhao, R. L. Alonso, and R. A. F. Romero, “Particle
competition for complex network community detection,” Chaos,
vol. 18, no. 3, p. 033107, 2008.

[41] R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D. Tax,
and S. Verzakov, “Prtools4.1, a matlab toolbox for pattern recog-
nition,” Delft University of Technology.

[42] V. N. Vapnik, The nature of statistical learning theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[43] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image
manifolds by semidefinite programming,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
Washington D.C., 2004, pp. 988–995.

[44] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing
markov process on a graph and a connection to a maximum
variance unfolding problem,” SIAM Review, vol. 48, no. 4, pp.
681–699, 2006.

[45] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computuation, vol. 15,
no. 6, pp. 1373–1396, 2003.

[46] O. Delalleau, Y. Bengio, and N. L. Roux, “Efficient non-parametric
function induction in semi-supervised learning,” in Artificial In-
telligence and Statistics, 2005, pp. 96–103.

[47] D. Zhou and B. Schölkopf, Semi-supervised Learning. Cambridge,
MA: MIT Press, 2006, ch. Discrete Regularization, pp. 237–250.

[48] O. Chapelle and A. Zien, “Semi-supervised classification by low
density separation,” in Tenth International Workshop on Artificial
Intelligence and Statistics, 2005, pp. 57–64.

[49] O. Chapelle, J. Weston, and B. Schölkopf, “Cluster kernels for
semi-supervised learning,” in Advances in Neural Information Pro-
cessing Systems, vol. 15, 2003.

[50] A. Corduneanu and T. Jaakkola, Semi-supervised Learning. Cam-
bridge, MA: MIT Press, 2006, ch. Data-Dependent Regularization,
pp. 163–190.

[51] V. Sindhwani, P. Niyogi, and M. Belkin, “Beyond the point cloud:
from transductive to semi-supervised learning,” in ICML ’05:
Proceedings of the 22nd international conference on Machine learning.
New York, NY, USA: ACM, 2005, pp. 824–831.

[52] C. J. C. Burges and J. C. Platt, Semi-supervised Learning. Cam-
bridge, MA: MIT Press, 2006, ch. Semi-Supervised Learning with
Conditional Harmonic Mixing, pp. 251–273.

[53] J. Hull, “A database for handwritten text recognition research,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, pp. 550–554, 1994.

[54] P. van der Putten and M. van Someren, “Coil challenge 2000: The
insurance company case,” Sentient Machine Research and Leiden
Institute of Advanced Computer Science, Amsterdam and Leiden,
Tech. Rep. 2000-09, 6 2000.

[55] A. Asuncion and D. Newman, “UCI machine learning
repository,” 2007. [Online]. Available: http://www.ics.uci.edu/
∼mlearn/MLRepository.html

[56] J. Fürnkranz and T. Joachims, Eds., Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel. Omnipress, 2010.

Fabricio Breve is a post-doctoral researcher in
the University of São Paulo, Brazil. He received
his bachelor’s degree from the Methodist Univer-
sity of Piracicaba, Brazil in 2001, his master’s de-
gree from the Federal University of São Carlos,
Brazil in 2006, and his Ph.D. from the University
of São Paulo, Brazil in 2010, all in Computer
Science. His research interests include machine
learning, image processing, artificial neural net-
works, complex networks, and nature-inspired
computation.

Liang Zhao is an associate professor in the
Department of Computer Science at University
of São Paulo, Brazil. He received the BS de-
gree in 1988 from Wuhan University, China,
and the PhD degree from Aeronautic Institute of
Technology, Brazil, in 1998. His research inter-
ests include artificial neural networks, nonlinear
dynamical systems, complex networks, nature-
inspired computation, and pattern recognition.
He has received a Brazilian Research Productiv-
ity Award and he is an Associate Editor of IEEE

Transactions on Neural Networks.

Marcos Quiles received the B.S. degree in 2003
from the State University of Londrina, Brazil,
and Ph.D. degree from the University of São
Paulo, Brazil, in 2009, both in Computer Sci-
ence. He is currently an Assistant Professor at
the Department of Science and Technology of
the Federal University of São Paulo, Brazil. His
current research interests include neural net-
works, computer vision, machine learning, and
complex networks.

Witold Pedrycz received the M.Sc., Ph.D., and
D.Sci. degrees from the Silesian University of
Technology, Poland. He is a Professor and
Canada Research Chair (CRC) with the Depart-
ment of Electrical and Computer Engineering,
University of Alberta, Canada. He is also with
the Systems Research Institute, Polish Academy
of Sciences, Warsaw, Poland. He is the author
of nine research monographs on computational
intelligence and software engineering. He is the
Editor-in-Chief of Information Sciences and a

member of the Editorial Board of several other international journals. His
research interests include computational intelligence, fuzzy modeling
and control, knowledge discovery and data mining, bioinformatics, and
software engineering.

Jiming Liu is the Chair Professor and Head of
Computer Science Department at Hong Kong
Baptist University. His current research interests
include: Autonomy-Oriented Computing, Web
Intelligence, self-organizing systems, and com-
plex networks. He has published over 250 jour-
nal and conference papers, and 5 authored
research monographs. He has served as the
Editor-in-Chief of Web Intelligence and Agent
Systems, Associate Editor of several interna-
tional journals.

