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Abstract—Concept drift is a problem of increasing importance
in machine learning and data mining. Data sets under analysis
are no longer only static databases, but also data streams
in which concepts and data distributions may not be stable
over time. However, most learning algorithms produced so far
are based on the assumption that data comes from a fixed
distribution, so they are not suitable to handle concept drifts.
Moreover, some concept drifts applications requires fast response,
which means an algorithm must always be (re)trained with the
latest available data. But the process of labeling data is usually
expensive and/or time consuming when compared to unlabeled
data acquisition, thus only a small fraction of the incoming data
may be effectively labeled. Semi-supervised learning methods
may help in this scenario, as they use both labeled and unlabeled
data in the training process. However, most of them are also
based on the assumption that the data is static. Therefore,
semi-supervised learning with concept drifts is still an open
challenge in machine learning. Recently, a particle competition
and cooperation approach was used to realize graph-based semi-
supervised learning from static data. In this paper, we extend
that approach to handle data streams and concept drift. The
result is a passive algorithm using a single classifier, which
naturally adapts to concept changes, without any explicit drift
detection mechanism. Its built-in mechanisms provide a natural
way of learning from new data, gradually “forgetting” older
knowledge as older labeled data items became less influent on
the classification of newer data items. Some computer simulation
are presented, showing the effectiveness of the proposed method.

Index Terms—Concept Drift, Semi-Supervised Learning, Par-
ticle Competition and Cooperation, Machine learning.

I. INTRODUCTION

Concept drift is a problem of increasing importance to
machine learning and data mining. Data sets under analysis
are no longer only static databases, but also data streams
in which concepts and data distributions may not be stable
over time. Some examples include climate prediction, fraud
detection, energy demand and many other real-world appli-
cations. However, most algorithms produced so far are based
on the assumption that data comes from a fixed distribution,
i.e., they are not suited to handle concept drift. Applying
them to such problems would inevitable result in low per-
formance. In order to address the problem of learning from
data streams with concept drift, one has to implement some
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kind of incremental learning which address two conflicting
objectives: retaining previously learned knowledge that is still
relevant, and replacing any obsolete knowledge with current
information. This problem is also refereed in the literature as
learning in nonstationary environments [1]-[5].

The term “concept drift” was coined by [6], who formulated
the problem of incremental learning from noisy data and
presented STAGGER, an adaptive learning algorithm which
was one of the earliest attempts to solve this problem. Concept
drift refers to a nonstationary learning problem over time.
When all data is sampled from the same data distribution,
we say the concept is stable. If for any two time points the
data distribution is different, we say that there is a concept
drift [1]. Nowadays, concept drift algorithms are commonly
classified in two major groups: active or passive algorithms.
The active algorithms are also called trigger based algorithms,
as they have some kind of detector which indicates a need for
model change, i.e., the learner adaptivity is triggered [7]-[11].
On the other hand, passive algorithms, also called evolving
algorithms, do not detect changes, the drift is simply assumed,
i.e., the learner evolves independently of triggers or detectors.
Most techniques in this category are classifier ensembles [2],
[12]-[16] where adaptivity is achieved by assigning different
weights to individual models output at each instant in time.

In some applications, the large amount of data generated
makes it impossible to collect and store it for later analysis.
Moreover, some applications, such as fraud detection in credit
cards and natural disaster forecast, requires fast response. In
order to proper detect and learn the concept drifts in these
conditions, the incremental learning algorithms requires that
the data stream is constantly fed to it, either online or in
batches. Typically, to achieve good performance regardless of
shifting in concepts, an algorithm must always be (re)trained
with the latest available data. This may pose another difficult
in applications where the process of labeling data is expensive
and/or time consuming when compared to unlabeled data
acquisition. In such scenarios, only a small fraction of the
incoming data may be effectively labeled. Semi-supervised
learning methods may be useful in these cases, as they are
specifically designed to learn from data sets where there are
lots of unlabeled data and only a few labeled data items [17]-
[19].

Semi-supervised learning methods may be split in some



categories, like generative models [20], [21], cluster-and-label
techniques [22], [23], co-training and tri-training techniques
[24]-[27], low-density separation models [28], and graph-
based methods, which is the most active category in the recent
years, and it includes methods like Mincut [29], Local and
Global Consistency [30], label propagation techniques [31],
[32], among others. Though many semi-supervised graph-
based methods were developed, most of them are similar and
they may be seen as regularization framework [17], differing
only in the particular choice of the loss function and the
regularizer [29], [30], [33]-[36]. Moreover, most of these
methods are also based on the assumption that the data is
static. Therefore, the semi-supervised learning with concept
drift problem is still an open challenge in machine learning.

Recently, a semi-supervised learning method based on par-
ticle competition and cooperation in networks was developed
[37]. In this method, particles walk in the network trying to
possess its nodes, i.e., marking their territory. Particles repre-
senting the same problem class/label belong to the same team,
and they cooperate with their teammates to dominate nodes for
their respective team (class/label). At the same time, particles
representing different classes/labels belong to different teams
and compete against each other. Like most semi-supervised
learning algorithms, the particle competition and cooperation
method was created on the assumption that the data sets are
always static. In this paper, we extended that approach to
handle data streams and concept drift. These objectives were
achieved by introducing rules to create new nodes, to eliminate
older nodes and to rearrange the connections in the network,
as new data examples becomes available in small batches. We
also introduce rules to create particles for each new labeled
data item, while eliminating old particles after they fulfill
their purpose of spreading their classes labels, among other
improvements.

The proposed algorithm is different from most other concept
drift algorithms. It is a semi-supervised learning graph-based
algorithm, which takes advantage of both labeled and unla-
beled data. It receives the data items in small batches and it is
specially suited for gradual or incremental changes in concept
[1]. It falls in the category of passive algorithms, as it naturally
adapts to concept changes, without any explicit drift detection
mechanism. And differently from most of other methods in this
category, it does not use ensembles of classifiers, it is rather
a single classifier approach which also does not include any
explicit retraining process. Its built-in mechanisms provide a
natural way of learning from new data, gradually “forgetting”
older knowledge as older labeled data items became less
influent on the classification of newer data items.

The rest of this paper is organized as follows. The proposed
model is described in section 2. In Section 3, computer
simulation results are presented. Finally, Section 4 concludes
the paper.

II. MODEL DESCRIPTION

In this section we describe the proposed method. The
data items are transformed into nodes of an undirected and

unweighed network as they arrive. For each labeled data item,
a particle is generated and put in the corresponding node. A
group of particles with the same label is called a feam. Each
node in the network has a vector of elements corresponding
to the domination level of each team of particles over that
node. As the system runs, particles use a random-greedy rule
to choose a neighbor to visit. They increase the domination
level of their respective team in the chosen node, at the same
time that they decrease the domination levels of other teams.
Teams of particles will act cooperatively trying to dominate
as many nodes as possible while preventing intrusion of other
teams. After some iterations, unlabeled nodes will be labeled
after the team of particles which have dominated them.

The first step is converting the data set into a network. Each
data item is converted into a network node and connected to
its k-nearest neighbors according to the Euclidean distance.
Since the algorithm receives new data items in batches, it will
reconfigure the network to reflect these changes each time a
new batch arrives. Basically, the algorithm will always keep a
graph G = (V,E), where V = {v1,vs,...,v,} is the set of
current nodes and E is the set of current edges (v;, v;), which
can also be represented by an adjacency matrix W:

1 if x; is among the k-nearest neighbors
Wi = of x; or vice-versa ,
0 otherwise

so W;; specifies whether there is an edge between the pair
of nodes v; and w;. The algorithm keeps a vector ¥ =
{y1,92,...,Yn}, where y; takes the label of the node v;
if it is known, or 0, otherwise. The label set is defined as
L ={1,2,...,c}, so a number is assigned to each of the ¢
classes and O is reserved for nodes which label is unknown.

The network also has a maximum size v,,q, that it is
allowed to reach. It is important that the network does not grow
indefinitely, because it would not only slower the algorithm,
but the older nodes would affect the classification of newer
nodes, which is not desirable when classifying nonstationary
data streams. Therefore, as the maximum size is reached, the
oldest nodes receive their definitive label and they are removed
from the network as the new nodes are created. The labeling
process will be explained later.

For each labeled node v; (i.e., y; # 0) which arrives in the
network, a particle p; is generated and its initial position is
set at the node v;. Particles generated for nodes with the same
class label form a team and cooperate among themselves to
compete with other teams. So, each team represents a class
of the network. There is also a limit p,,,, in the amount of
the particles a network can have. Therefore, when the limit is
reached, the oldest particles will be removed as new particles
are created. Each particle p; has a variable p%(t) € [0,1],
called particle strength, which indicates how much the particle
can affect nodes domination levels at time .

Each node v; has a vector variable v{’(t) = {uv;"(t),
v 2(t), ..., v (t)} called domination levels, and each element
v (t) € [0,1] corresponds to the level of domination of team

£ over node v;. At each node, the sum of the domination levels
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is always constant, as follows:

iv‘{” =1, (2)
(=1

because particles increase the node domination level of their
own team and, at the same time, decreases the other teams’
domination levels.

Each node v; has an initial value of its domination vector
w

v{ set as follows:
vt(t) =4 1 ify, =¢ 3)
0 otherwise

i.e., for each unlabeled node (y; = 0), the domination levels
of all particle teams are set to the same value %, where c¢
is the amount of teams (classes); and for each labeled node
(y; # 0), the domination level of the dominating team is set
to the highest value 1, while the domination levels of other
teams are set to the lowest value 0.

Each particle has its initial position set to its corresponding
labeled node, and their initial strength is set as follows:

Pyt =1, (4)

i.e., each particle starts with maximum strength.

At each iteration, a particle randomly chooses any of its
neighbors to target with higher probability to the nodes in
which its team have higher domination level. Therefore, the
particle p; chooses its target node v; with probabilities defined
according to its team domination level on that neighbor p;”’f,
as follows:

W,
ZZ: 1 Wq:u'

ey,
N Wyiv;
n g
ZH:1 Wauv;

p(vilpj) = (1 — ) + S))

where ¢ is the index of the node being visited by particle
pj and £ = p;-c , where pf is the class label of particle p;.
0 < o < 1 is a parameter that defines the weight of team
domination levels and distances on the probabilities. When «
is low, exploratory behavior dominates; and when « is high,
defensive behavior dominates. Best classification performance
is achieved when there is an equilibrium between exploratory
and defensive behavior. Therefore, we usually set o = 0.5.

Notice that particles also move when the node they are
staying is going to be eliminated. In this case, it will be moved
randomly to any of its neighbors, and its strength will be set
according to (7).

Teams of particles compete for owning the network nodes.
When a particle moves to another node, it increases the
domination level of its team in that node, at the same time
that it decreases the domination level of the other teams in
that same node. The exception are the labeled nodes, which
domination levels are fixed. Thus, for each selected target node

v;, the domination level v, (¢) is updated as follows:

mac{0, 05 (¢) — 222y

if y; =0 and £ # p
UF () 4 D v (E) = v (t+1) . (6)

if y; =0 and £ = p
v (t) if g £ 0
where 0 < A, < 1 is a parameter to control changing rate
of the domination levels and p;-c represents the class label of
particle p;. If A, takes a low value, the node domination
levels change slowly, while if it takes a high value, the node
domination levels change quickly. Each particle p; increases
the domination level of its team (v;*, ¢ = pj) at the node v;
when it targets it, while it decreases the domination levels of
other teams in this same node (v, ¢ # pf ), always respecting
the conservation law defined by Eq. (2). The domination levels
of all labeled node vy’ are always fixed, as defined by the third
case expressed by Eq. (6).

Particles get stronger when they move to nodes being
dominated by their own team and they get weaker when
they move to nodes dominated by other teams. Thus, at each
iteration ¢, a particle strength p (t) is updated as follows:

Pyt +1) =v"(t+1), @)

ot D) =

where v; is the target node, and ¢ = p;, i.e., £ is the class label
of particle p;. Therefore, each particle p; has its strength p
set to the value of its team domination level v;” of the node
V;.

When a particle tries to move to the target node, it may be
either accepted or rejected due to the competition mechanism.
After modifying the target node domination levels and updat-
ing its own strength, the particle will be accepted in the target
node only if the domination level of its team is higher than
others; otherwise, a shock happens and the particle stays in the
current node until the next iteration. There is an exception,
though: the shock rule is not applied when the particle is
moving because its current node is being eliminated.

The distance tables introduced in [37] are no longer needed
in this new method. Old particles now move guided only by
its team domination on its neighborhood. This also allows the
particles to naturally migrate to other regions as the concepts
drift, until they are removed to give place to a new particle.

Unlabeled nodes are labeled according to the team which
has the highest domination level on them:

y; = arg max vt (t). (8)

The final label of any node is given when they are removed
from the network, i.e., a node stays in the network for a
certain amount of time (iterations) so the teams of particles
can fight for it. When it is time for a node to be removed
from the network (to give its place to a new node created for
a new data item), it receives its final label according to the
team who owns it at that time. Labeled nodes also stay in the
network spreading their label, until they are eliminated after
the predefined amount of time.



Overall, the proposed algorithm can be outlined as showed
in Algorithm 1.

Algorithm 1: The Proposed Algorithm

1 for each new batch of data items do

2 for each new data item do

3 if network size already reached maximum size then

4 if the oldest node is unlabeled then

5 L Label the oldest node by using Eq. (8);

6 if there is a particle in the oldest node then

7 Move particle to any of the node’s neighbors

randomly;

8 Remove the oldest node;

9 Add a new network node for the new data item;

10 Set new node domination levels by using Eq. (3);

11 if the new node is labeled then

12 if the amount of particles already reached
maximum then

13 L Eliminate oldest particle;

14 Create a new particle;

15 Set new particle initial position at the new node;

16 | Set new particle strength by using Eq. (4);

17 repeat

18 for each particle do

19 Select the target node by using Eq. (5);

20 Update target node domination levels by using Eq.
(6);

21 Update particle strength by using Eq. (7);

22 Move particle to the target node;

23 if chock occurs then

24 L Move particle back to the previous node;

25 | until next batch of data items arrives;

III. COMPUTER SIMULATIONS

In this section, we present simulation results to show the
effectiveness of our method in semi-supervised classification
with concept changes. The following parameters are used in
these simulations: A, = 0.1 and o = 0.5. These values were
obtained by empirical optimization using the grid method.

For the first set of simulations, we generate data sets
with 4 equiprobable classes with Gaussian distribution, by
using PRTools [38] function gendats. For each experiment,
50,000 data items (n) are generated in 500 batches, 100 data
items in each of them. The 4 Gaussian kernels are always
positioned in the border of an imaginary circumference, as
showed in Figure 1. These kernels move clockwise from
batch to batch, completing a whole lap when the last batch
is generated.

The data items are presented to the algorithm in batches of
100 elements. 10% of these data items are presented with their
respective labels and the remaining are presented unlabeled
(a typical semi-supervised learning scenario). Each batch of
elements will be converted into nodes of the network as they
arrive, and after some time they will receive their final labels
as they are replaced by new nodes (generated from new data
items). The exception are the last batches, which are labeled

6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
Batch 100 Batch 300
Fig. 1. Snapshots of the data sets

after some time but are not removed from the network, as
there are no new data items to replace them.

In this kind of problem, we have to work under some
constraints, the amount of processing is limited by the interval
between each batches arrival and by the hardware executing
the algorithm. Therefore, we have fixed 100, 000 as the amount
of particle movements which can be processed in the interval
between each batch arrival. Notice that, the computational
cost of processing a single particle movement is given by
the amount of neighbors the node it is currently staying has
[37]. We have control over the network average node degree
by defining how many k-nearest neighbors are connected to
the nodes. In these experiments, we fixed k = 5. Therefore,
the time to process 100,000 particle movements will be fairly
constant no matter the network size or amount of particles
walking in the network.

Since we have some flexibility in the maximum network
size (Umax) and the maximum amount of particles (pmax), We
can tune these values in order to achieve better classification
accuracy. Of course, allowing more particles in the network
means that each individual particle will make less movements
(the total amount of movements between each batch arrival
has to be 100, 000). For simplicity, we are ignoring the time
needed to re-arrange the network each time a new batch
arrives, as it is negligible when the maximum network size
is small. But if one decide to use larger networks (thousands
of elements), a faster (non-exponential) method to rearrange
the network will have to be used in order to keep up with the
limitations of processing time.

So, in these simulations, the maximum network size is set to
Umax = {200;400; 600; 800; 1,000; 1,200}, and the maximum
amount of particles is set t0 pmax = {20;40;60;...;200}.
So, there are 400 possible combinations, and each of these
configurations is repeated 50 times. The averages are showed
in Figure 2.

By analyzing the Figure 2, we notice that the algorithm
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Fig. 2. Simulation 1: Slow Concept Drift. Correct Classification Rate with
varying maximum network size (vmax) and maximum amount of particles
Pmax- 7 = 50, 000.

benefits from more particles representing the same class. We
can see improvements in the classification performance as the
set of particles size ppmux grows from small to medium, and
tends to stabilize at some point beyond which there are no
significant improvement.

The maximum network size (vnyax) is directly related to the
amount of past knowledge that the algorithm can “remember”.
In the scenario above, where the concept drifts slowly, it
is useful to have a large network. By analyzing Figure 2,
we notice that the best classification performance is achieved
when vpax = 1,000. If the concept drifts were faster, the
optimal size of the network would probably be smaller.

In order to confirm the assumption stated above, we run
the same computer simulations again, but with only 10,000
data items generated (n). In this scenario, there are only
100 batches of elements (instead of 500), but the Gaussian
kernels used to generate the data items will still perform
a complete clockwise lap. Therefore, the concept drifts five
times as fast as in the previous computer simulations, so
we expect a significant drop in classification performance
when the network is large, leaving the best results to be
achieved by smaller networks, which are quicker to “forget”
past knowledge that are no longer valid. Again, each of the
400 combinations of vmax and pmax 1s repeated 50 times, and
the averages are showed in Figure 3.

By analyzing the Figure 3, we notice that the best classifica-
tion performance is now achieved when vy,x = 600. Beyond
this optimal point, the classification performance gets worse as
the network size grows, which confirms our assumption that,
in this particular case, larger networks “remember” too much
past knowledge, including those that are no longer valid, and
this situation leads to wrong label propagation from the older
nodes to the newer nodes.

IV. CONCLUSION

This paper proposes a new method for semi-supervised
classification with concept drifts, i.e., in nonstationary envi-
ronments. This method is biologically inspired and it uses
teams of walking particles competing for network nodes. Each
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Fig. 3. Simulation 2: Fast Concept Drift. Correct Classification Rate with

varying maximum network size (Umax) and maximum amount of particles
pmax- 7 = 10, 000.

team represent a class problem and the corresponding particles
cooperate with their teammates in order to spread their labels
by walking in the network, at the same time that they expand
their domain by competing with particle from other teams.

The current implementation of the algorithm receives the
data items in small batches and it is specially suited for
gradual or incremental changes in concept. It is a passive
concept drift algorithm, as it naturally adapts to these changes,
without any explicit drift detection mechanism. Unlike other
methods, it does not rely on base classifiers with explicit
retraining process, its built-in mechanisms provide a natural
way of learning from new data, gradually “forgetting” older
knowledge as older labeled data items became less influent
on the classification of newer data items. It is also a single
classifier approach, different from most other passive methods
which rely on classifier ensembles.

As future work, we intend to build some mechanism to
automatically select the parameters which control the sizes of
the network and the set of particles, according to the data
that is being fed to the algorithm. This could highly improve
the performance of the algorithm in scenarios where the
concepts may be stable for sometime and/or have different drift
speeds through time. Notice that, with these improvements,
the proposed algorithm would turn into an active concept drift
algorithm.
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