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• Visual Attention is a technique used by biological neural 
network systems developed to reduce the large amount 
of visual information that it is received by natural 
sensors [5].

• In 1981, von der Malsburg [13] suggested that each 
object is represented by the temporal correlation of 
neural firing activities, which can be described by 
dynamic models

Introduction
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Introduction

• A natural way of representing the coding of the temporal 

correlation is to use synchronization between oscillators.

• Objective: Study of synchronization in some biological

neurons’ models which exhibit chaotic behaviors, by

using a coupling force  between the oscillators as in 

Breve et. all work [3] 

• The motivation is to use this sync method for visual 

selection of objects that represents sync neurons' 

models, while the rest of the image is unsynced.
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• The phase synchronization of two oscillators p and q
happens when their phases difference |𝜑𝑝 - 𝜑𝑞 | is kept 
below a certain phase threshold C.

• So as t → ∞, |𝜑𝑝 - 𝜑𝑞 | < C. The phase i at time 𝑡𝑖 is 
calculated as following [11]:

𝜑𝑖 = 2𝜋𝑘 +
𝑡𝑖 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
(1)

• where k is the number of neural activities prior to time 𝑡𝑖, 
and 𝑡𝑘 and 𝑡𝑘+1 are the last and the next times of neural 
activity, respectively.

Phase Synchronization
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• So that two oscillators can synchronize with each other, a 
coupling term is added to the dynamical system as the
following:

ሶ𝑥𝑗
𝑝
= 𝐹𝑗 𝑿, 𝝁 + 𝑘∆𝑝,𝑞 (2)

ሶ𝑥𝑗
𝑞
= 𝐹𝑗 𝑿, 𝝁 + 𝑘∆𝑞,𝑝

• Where ሶ𝑥𝑗
𝑝

and ሶ𝑥𝑗
𝑞

are the time evolution of the 𝑥𝑗 state of

the p and q oscillators. 𝐹𝑗 𝑿, 𝝁 is the behaviour’s rate 
and 𝑘∆𝑝,𝑞 is the coupling term, where k is a coupling
force and ∆𝑝,𝑞 is the difference between the states:

∆𝑝,𝑞= 𝑥𝑗
𝑞
− 𝑥𝑗

𝑝
(3)

Phase Synchronization
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• The proposed models for the attention system are a two-
dimensional network of neural models' dynamical 
systems with coupled terms.

• Dynamical Systems: Hodgkin-Huxley [8], Hindmarsh-
Rose [7], Integrate-and-Fire [10], Spike-Response-
Model [6]. It was used the 4th Order Runge-Kutta
numerical method.

• Discrete Models: Aihara’s [1], Rulkov’s [12], Izhikevic [9] 
and Courbage-Nekorkin-Vdovin [10].

• Search for chaos by varying the parameters values in 𝝁
= (𝜇1, 𝜇2, ..., 𝜇𝑖, ..., 𝜇𝑁) or adding a white noise at the
models.

Methodology and Models
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Methodology and Models

Fig. 1: Two Oscillator Problem

Fig. 2: Vector of Oscillators Coupled

Fig. 3: Grid of Oscillators Coupled
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Coupling Force Variation: some oscillators were strongly 
coupled and others weakly, so that the first were 
synchronized and hence clusterized.

Methodology and Models

Fig. 4: Grid of Neurons
Fig. 5: Grid of Sync

Neurons and Unsync.
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Chaotic and stochastic trajectories to represent different neurons and
pixels.

Results

Fig. 6: Stochastic Hodgkin-
Huxley

Fig. 7: Chaotic Hindmarsh-Rose
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Fig. 7: Stochastic Integrate-and-Fire

Results

Fig. 8: SRM with different limit times
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Fig. 9: Chaotic Aihara

Results

Fig. 10: Chaotic Rulkov
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Fig. 11: Chaotic Izhikevic

Results

Fig. 12: Chaotic CNV
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Trajectories and phases difference of a grid of oscillators with phase
threshold at 2𝜋 [2].

Results

(a) Trajectories Difference (b) Phases Difference

Fig. 13: Hodgkin-Huxley Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 14: Hindmarsh-Rose Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 15: Integrate-and-Fire Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 16: Spike-Response-Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 17:Aihara’s Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 18: Rulkov’s Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 19: Izhikevic’s Model
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(a) Trajectories Difference

Results

(b) Phases Difference

Fig. 20: Courbage-Nekorkin-Vdovin Model
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Trajectories and the phases difference of the models
(Hodgkin-Huxley, Hindmarsh-Rose and Integrate-and-Fire) 
in a grid with sync and unsync oscillators.

Results

(a) Synchronized and
desynchronized Trajectories

(b) Phases Difference

Fig. 21: Hodgkin-Huxley Model
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(a) Synchronized and
Desynchronized Trajectories

Results

(b) Phases Difference

Fig. 22: Hindmarsh-Rose Model
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(a) Synchronized and
Desynchronized Trajectories

Results

(b) Phases Difference

Fig. 23: Integrate-and-Fire Model
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• Discrete time models didn’t synchronizes. 
Continuous time models synchronizes.

• Spike-Response-Model synchronizes without a 
coupling force, only considering the arrival time 
of presynaptic stimuli. But did not show chaos 
behavior.

• The continuous models tested for the 
synchronization and desynchronization for a 
cluster formation depending on the coupling 
force showed a potential solution for a visual 
selection mechanism for an attention system.

Conclusions
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