

VISUALLY IMPAIRED AID USING CONVOLUTIONAL NEURAL NETWORKS, TRANSFER LEARNING, AND PARTICLE COMPETITION AND COOPERATION

Fabricio A. Breve and Carlos N. Fischer São Paulo State University (UNESP)

SPONSORS:

IEEE

Computational

Intelligence Society THE INTERNATIONAL NEURAL NETWORK SOCIETY (INNS)

Motivation

- It is estimated that at least 2.2 billion people have a vision impairment or blindness. [1]
- The majority of them are over 50 years old and live in low and middle-income regions. [2]
- Navigation and mobility are among the most critical problems faced by visually impaired persons.

- There were many advances in computer vision and some proposed navigation systems in the last decade.
- **Issues**: Many of them *require expensive, heavy, and/or not broadly available equipment, or require a network connection to a powerful remote server.*
- The white cane is still the most popular, simplest tool for detecting obstacles due to its low cost and portability. [3]

Computational Intelligence The Internationa Neural Network

IEEE World Congress on Computational Intelligence Virtual Conference – July 19-24 2020

SPONSORS:

dvancing Technology for Humanitv

World Health Organization, "Vision impairment and blindness," Oct 2019, accessed: 2019-01-14. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
R. R. Bourne, S. R. Flaxman, T. Braithwaite, M. V. Cicinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, J. Leasher, H. Limburg et al., "Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis," The Lancet Global Health, vol. 5, no. 9, pp. e888– e897, 2017.

^[3] C. K. Lakde and P. S. Prasad, "Review paper on navigation system for visually impaired people," International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 1, 2015.

Objectives

- **Project Goal**: build a system to assist visually impaired people.
- **Requirement**: execute on a single smartphone, without extra accessories or connection requirements.
- Method: the smartphone takes pictures of the path and provides audio and/or vibration feedback regarding potential obstacles, before they are in the reach of the white cane.
- This Paper Goal: build the classification step, based on:
 - Convolutional Neural Networks (CNNs);
 - Transfer Learning (TL);
 - Semi-Supervised Learning (SSL) using the Particle Competition and Cooperation (PCC) method.

Why Convolutional Neural Networks?

- CNNs training phase commonly has very high computational costs.
- However, once trained, CNNs are relatively fast to make inferences.
- Most current smartphones SoCs (System-on-a-Chip) are able to make inferences on a single image using CNN models, like VGG19, in the range of milliseconds. [24]

[24] A. Ignatov and R. Timofte, "Ai benchmark: All about deep learning on smartphones in 2019," in IEEE International Conference on Computer Vision (ICCV) Workshops, 2019

The Dataset

- We propose a dataset with:
 - 342 images;
 - Two classes:
 - 175 images of "clear-path";
 - 167 images of "non clear-path";

• The Dataset covers:

- Indoor and outdoor situations;
- Different types of floor;
- Dry and wet floor;
- Different amounts of light;
- Daylight and artificial light;
- Different types of obstacles:
 - Stairs, trees, holes, animals, traffic cones, etc.

IEEE WCCI 2020 IEE World Congress on Computational Intelligence Virtual Conference – July 19-24, 2020

Clear Path

Non-Clear Path

The full dataset is available at: https://github.com/fbreve/via-dataset

Baseline CNN

- Input images resized to 128 x 128 pixels
- 3 Convolutional Layers.
 - Each followed by normalization and max-polling layers.
- Dense Intermediate Layer.
 - Followed by normalization and dropout layers.
- Classification Layer.
- ReLU activation functions
 - Except classification layer (softmax)
- Data Augmentation
- Different optimizers
 - Adam, RMSProp, SGD

Baseline CNN

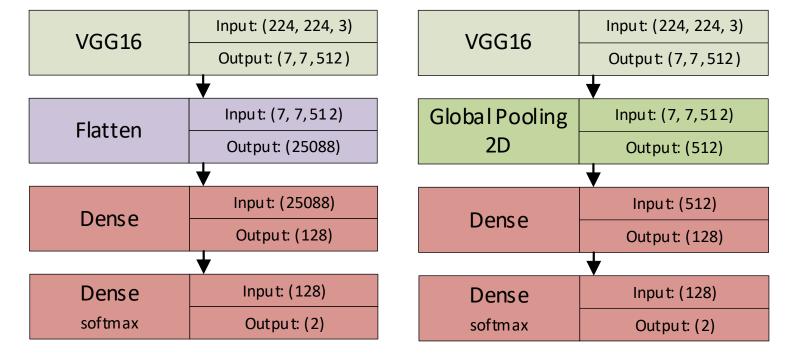
• Results:

Data Augmentation	Optimizer	Accu	iracy
No	Adam	67.97%	± 7.33%
No	RMSProp	70.35%	± 8.67%
No	SGD	60.53%	± 8.64%
Yes	Adam	73.51%	± 7.98%
Yes	RMSProp	76.40%	± 7.14%
Yes	SGD	72.19%	± 7.57%

Transfer Learning

- 17 architectures trained pre-trained in the ImageNet dataset [25]
- Four different scenarios:
 - Frozen Layers vs. Tunable Layers
 - No Polling vs. Global Average Polling

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge," International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.



IEEE Computational Intelligence

Society

Example: VGG16 and No Polling

Example: VGG16 and Average Polling

THE INTERNATIONAL NEURAL NETWORK

SOCIETY (INNS)

SPONSORS:

333

for Humanity

Advancing Technology

A wala ita atu wa	Frozen Weights				Fine-Tunable Weights			
Architecture	No Polling		Average Polling		No Polling		Average Polling	
Xception	49.43%	± 6.82	51.18%	± 8.61	87.70%	± 2.62%	92.11%	± 5.01%
VGG16	83.39%	± 13.35%	76.88%	± 7.32%	85.76%	± 11.97%	85.16%	± 12.96%
VGG19	81.36%	± 11.11%	73.97%	± 5.53%	83.40%	± 11.38%	85.18%	± 13.29%
ResNet50	51.17%	± 8.82%	51.18%	± 8.61%	49.98%	± 9.31%	51.77%	± 8.77%
ResNet101	51.18%	± 8.61%	50.87%	± 8.08%	66.12%	± 19.75%	51.42%	± 8.83%
ResNet152	48.05%	± 10.97%	51.17%	± 7.88%	54.90%	± 12.51%	47.37%	± 4.85%
ResNet50V2	51.19%	± 11.08%	51.19%	± 11.08%	51.48%	± 8.72%	69.71%	± 22.50%
ResNet101V2	51.18%	± 8.61%	51.18%	± 8.12%	63.49%	± 9.02%	51.46%	± 9.02%
ResNet152V2	51.18%	± 8.12%	53.25%	± 11.63%	54.40%	± 7.53%	54.69%	± 6.24%
InceptionV3	51.18%	± 8.61%	51.18%	± 8.61%	79.94%	± 16.02%	88.90%	± 3.38%
InceptionResNetV2	51.18%	± 8.12%	51.19%	± 11.08%	75.53%	± 11.90%	78.37%	± 5.08%
MobileNet	51.48%	± 8.72%	51.18%	± 8.61%	81.43%	± 16.66%	90.08%	± 5.02%
DenseNet121	51.18%	± 8.61%	51.18%	± 8.61%	54.71%	± 9.75%	45.03%	± 8.62%
DenseNet169	51.45%	± 8.04%	48.24%	± 8.73%	64.63%	± 12.02%	75.50%	± 15.18%
DenseNet201	48.34%	± 10.90%	51.46%	± 9.11%	61.80%	± 17.82%	59.34%	± 8.70%
NASNetMobile	51.78%	± 9.43%	49.13%	± 12.40%	50.29%	± 8.46%	49.13%	± 8.80%
MobileNetV2	50.90%	± 8.65%	51.19%	± 11.08%	50.90%	± 8.65%	51.18%	± 8.61%

SPONSORS:

Advancing Technology for Humanity

VGG16: different amount of frozen layers

Frozen Layer Blocks	Νο Ρο	olling	Average Polling		
None	89.19%	± 6.46%	86.93%	± 6.42%	
1	88.56%	± 5.84%	88.95%	± 6.84%	
2	88.96%	± 5.99%	89.23%	± 7.52%	
3	89.40%	± 6.50%	88.42%	± 6.84%	
4	87.10%	± 5.84%	87.65%	± 7.39%	
All	86.36%	± 7.09%	74.78%	± 7.00%	

SPONSORS:

Advancing Technology

Xception and MobileNet: different amount of frozen layers

Frozen Layer Blocks	Хсер	otion	MobileNet		
None	91.68%	± 3.58%	88.89%	± 3.36%	
1	48.26%	± 8.27%	51.17%	± 7.48%	
2	49.55%	± 8.82%	52.03%	± 9.70%	
3	48.95%	± 7.91%	50.74%	± 10.39%	
4	48.80%	± 7.35%	49.85%	± 10.05%	
5	51.18%	± 11.15%	45.13%	± 10.43%	

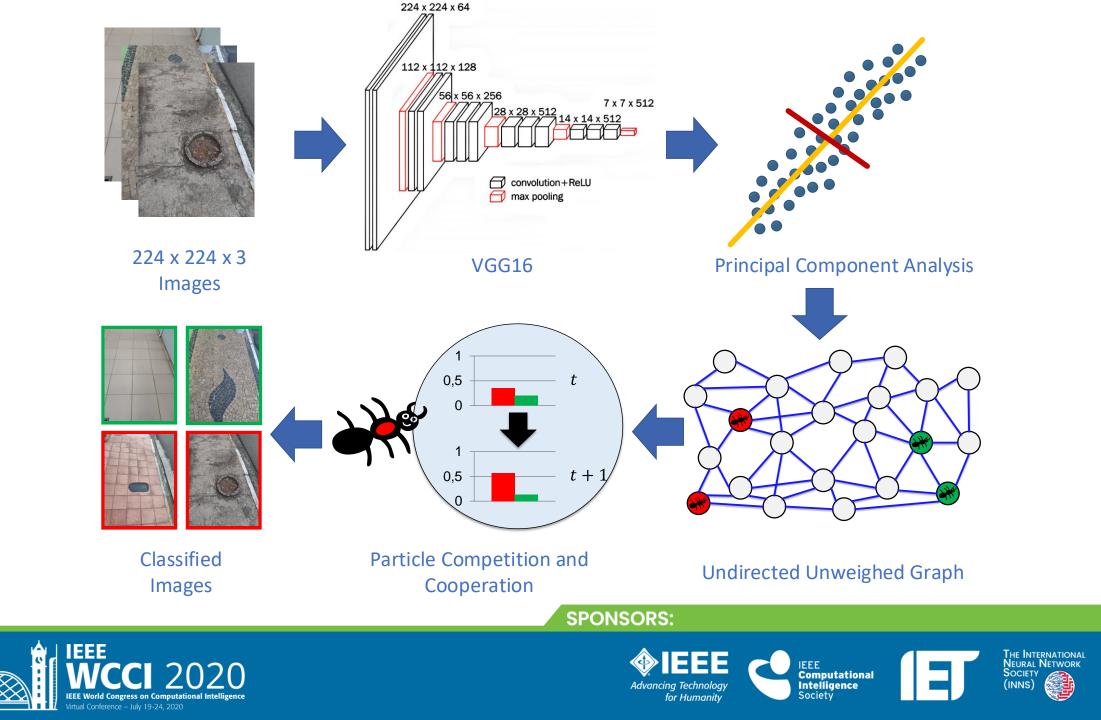
SPONSORS:

Advancing Technology

for Humanity

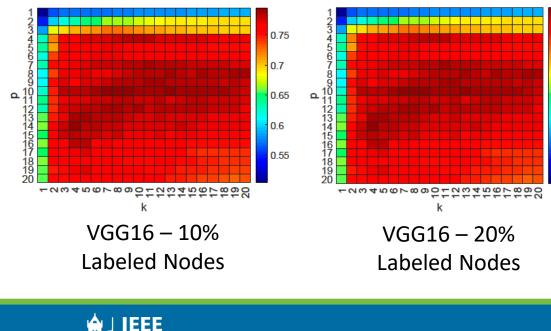
Why Semi-Supervised Learning and Particle Competition and Cooperation?

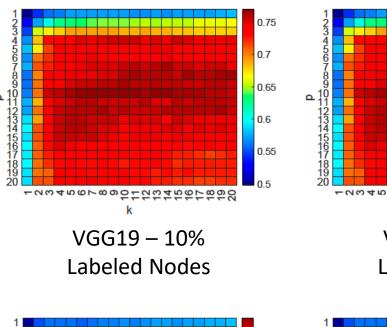
- **Problem:** It is difficult to acquire and label pictures of the many different scenarios an user may face.
- Solution: Incorporate new knowledge, acquired from user feedback.
- **Problem**: CNNs inference in smartphones is feasible, but the training process is not.
- **Solution:** use VGG16 and VGG19 as feature extractors and a fast SSL method, like PCC, to incorporate knowledge on-the-fly.
 - The CNN weights are frozen.
 - A graph is built from the CNN output and fed to PCC.
 - Principal Component Analysis is used to reduce dimensionality.
 - PCC can incorporate new data and new labels at low cost.

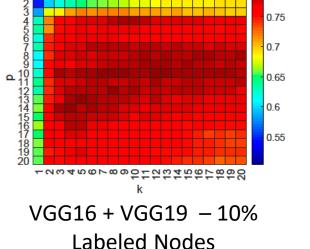


PCC Framework: best parameters

- PCC framework accuracy varying the number of:
 - *k*-nearest neighbors (graph construction)
 - *p* principal components (PCA)

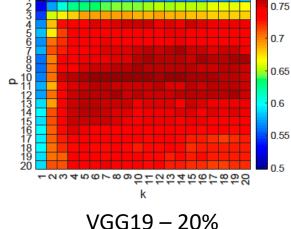




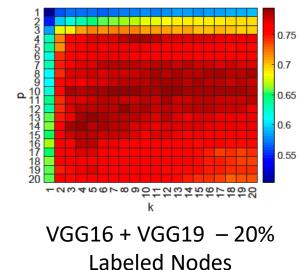


IEEE Computational

Intelligence



Labeled Nodes



THE INTERNATIONAL NEURAL NETWORK

SOCIETY (INNS)

SPONSORS:

Advancing Technology for Humanity

0.75

0.7

0.65

0.6

0.55

PCC Framework: Results

Labeled Nodes	Architecture	p	k	Accuracy		
10%	VGG16	10	7	77.01%	± 3.55%	
10%	VGG19	10	8	76.99%	± 3.60%	
10%	VGG16+VGG19	10	8	76.99%	± 3.68%	
20%	VGG16	10	7	79.53%	± 2.40%	
20%	VGG19	10	8	79.35%	± 2.65%	
20%	VGG16+VGG19	14	4	79.43%	± 2.65%	

SPONSORS:

Advancing Technology for Humanity

Conclusions

- We propose methods to help in identifying obstacles in the path of visually impaired people.
 - These methods have low computational costs in the inference step.
 - Milliseconds in current smartphones;
 - They can be implemented without relying on other equipment or remote servers.
- We also propose a dataset to help in the training of these methods.
- We compared many consolidated CNN architectures pre-trained on a large dataset and fine-tuned them to the proposed task.
- We use pre-trained CNN architectures as feature extractors for semi-supervised learning classification.
 - Particle competition and cooperation method.

SPONSORS:

The Internationa Neural Network

IEEE Computational Intelligence

Conclusions

- Computer simulations showed promising results with some of the CNN architectures.
- The SSL also achieved relatively high accuracy.
 - Considering that it is using only up to 20% of the dataset for training and no fine-tuning in CNN networks.
- Future Work:
 - Acquire more images to the proposed dataset;
 - Search for other approaches and tweaks in the current framework to further improve the classification accuracy;
 - Build a smartphone prototype application to test some real-world scenarios.

