

Convolutional Neural Networks and Ensembles for Visually Impaired Aid

Fabricio Breve

São Paulo State University - UNESP fabricio.breve@unesp.br

* (

Walvareldade do Minho Computers

Springer

Motivation

- Approximately 2.2 billion people suffer from some form of visual impairment.
 - Including at least 1 billion with moderate or severe distance vision impairment [40].
- The prevalence of distance vision impairment is significantly higher in low- and middleincome areas compared to high-income regions [34].
- This population faces numerous difficulties in their daily routines, mostly linked to **mobility** and navigation.

- With advancements in computer vision and related technologies, numerous navigation systems have been proposed.
- **Issues:** many of them:
 - require costly, bulky, and/or custom equipment;
 - are too computationally intensive to run on portable devices;
 - require a network connection to a more powerful remote server.
- White canes and guide dogs are currently the most commonly utilized tools to aid visually impaired (VI) individuals [15].

[15] Islam, M.M., Sheikh Sadi, M., Zamli, K.Z., Ahmed, M.M.: Developing walking assistants for visually impaired people: A review. IEEE Sensors Journal 19(8), 2814-2828 (2019). https://doi.org/10.1109/JSEN.2018.2890423.

^[34] Steinmetz, J.D., Bourne, R.R., Briant, P.S., Flaxman, S.R., Taylor, H.R., Jonas, J.B., Abdoli, A.A., Abrha, W.A., Abualhasan, A., Abu-Gharbieh, E.G., et al.: Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: the right to sight: na analysis for the global burden of disease study. The Lancet Global Health 9(2), e144-e160 (2021).

^[40] World Health Organization: Vision impairment and blindness (Oct 2022), <u>https://www.who.int/news-room/fact-sheets/detail/blindness-and-visualimpairment</u>, accessed: 2023-01-30.

Motivation

- Recent surveys show that:
 - Smartphone-based computer vision tools for the VI often employ **outdated** image and video processing techniques [3];
 - Researchers have started to adopt deep learning approaches [24]:
 - These techniques have grown with the advent of increased computational power in machines;
 - However, carrying high-powered computational devices for vision-based assistive solutions is **not practical** for users.

[3] Budrionis, A., Plikynas, D., Daniu²is, P., Indrulionis, A.: Smartphonebased computer vision travelling aids for blind and visually impaired individuals: A systematic review. Assistive Technology 34(2), 178194 (2022). <u>https://doi.org/10.1080/10400435.2020.1743381</u>, pMID: 32207640.

[24] Mandia, S., Kumar, A., Verma, K., Deegwal, J.K.: Vision-based assistive systems for visually impaired people: A review. In: Tiwari, M., Ismail, Y., Verma, K., Garg, A.K. (eds.) Optical and Wireless Technologies. pp. 163172. Springer Nature Singapore, Singapore (2023).

Objectives

- Project Goal: build a system to assist visually impaired people.
- **Requirement**: execute on a single smartphone, without extra accessories or connection requirements.
- Method: the smartphone takes pictures of the path and provides audio and/or vibration feedback regarding potential obstacles, before they are in the reach of the white cane.
- This Paper Goal: perform the classification step, based on Convolutional Neural Networks (CNNs).
 - Find the best CNN architecture for this task;
 - Find the optimal learning hyperparameters.

Contributions

- **Prior study [2]**: a framework that leverages CNNs, transfer learning, and semi-supervised learning (SSL).
 - The focus was to minimize computational costs and make it feasible for implementation on smartphones without requiring additional hardware.
- **This study**: previous works are significantly expanded upon with the following key contributions:
 - 1. Eight additional CNN models were added to the study, based on the cutting-edge EfficientNet architecture [37], bringing the total number of networks evaluated to 25;
 - 2. The K-Fold Cross Validation process was repeated five times, providing more robust results;
 - 3. Image pre-processing functions were introduced to enhance image preparation for each network type, resulting in improved accuracy in most cases;
 - 4. Ensembles of CNNs were employed to boost the overall accuracy by leveraging the strengths of multiple CNN architectures.

The Dataset

- 342 images;
- Two classes:
 - 175 images of "clear-path";
 - 167 images of "non clear-path".

- The Dataset covers:
 - Indoor and outdoor situations;
 - Different types of floor;
 - Dry and wet floor;
 - Different amounts of light;
 - Daylight and artificial light;
 - Different types of obstacles:
 - Stairs, trees, holes, animals, traffic cones, etc.

Non-Clear Path

Clear Path

The full dataset is available at: <u>https://github.com/fbreve/via-dataset</u>

CNN Architectures

 25 evaluated architectures

Madal	Input Image	Output of Last	Trainable	
IVIOGEI	Resolution	Conv. Layer	Parameters	
DenseNet121	224 × 224	7 × 7 × 1024	7,085,314	
DenseNet169	224 × 224	7 × 7 × 1664	12,697,858	
DenseNet201	224 × 224	7 × 7 × 1920	18,339,074	
EfficientNetB0	224 × 224	7 × 7 × 1280	4,171,774	
EfficientNetB1	240 × 240	8 × 8 × 1280	6,677,410	
EfficientNetB2	260 × 260	$9 \times 9 \times 1408$	7,881,604	
EfficientNetB3	300 × 300	$10 \times 10 \times 1536$	10,893,226	
EfficientNetB4	380 × 380	$12 \times 12 \times 1792$	17,778,378	
EfficientNetB5	456 × 456	15 × 15 × 2048	28,603,314	
EfficientNetB6	528 × 528	$17 \times 17 \times 2304$	41,031,002	
EfficientNetB7	600 × 600	19 × 19 × 2560	64,115,026	
InceptionResNetV2	299 × 299	8 × 8 × 1536	54,473,186	
InceptionV3	299 × 299	8 × 8 × 2048	22,030,882	
MobileNet	224 × 224	7 × 7 × 1024	3,338,434	
MobileNetV2	224 × 224	7 × 7 × 1280	2,388,098	
NASNetMobile	224 × 224	7 × 7 × 1056	4,368,532	
ResNet101	224 × 224	7 × 7 × 2048	42,815,362	
ResNet101V2	224 × 224	7 × 7 × 2048	42,791,426	
ResNet152	224 × 224	7 × 7 × 2048	58,482,050	
ResNet152V2	224 × 224	7 × 7 × 2048	58,450,434	
ResNet50	224 × 224	7 × 7 × 2048	23,797,122	
ResNet50V2	224 × 224	7 × 7 × 2048	23,781,890	
VGG16	224 × 224	7 × 7 × 512	14,780,610	
VGG19	224 × 224	7 × 7 × 512	20,090,306	
Xception	299 × 299	$10 \times 10 \times 2048$	21,069,482	

Proposed CNN Networks

- Weights initialization:
 - **Convolutional layers**: pre-trained weights from the Imagenet dataset [28].
 - **Dense layers**: He uniform variance scaling initializer [7].

[28] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV) 115(3), 211252 (2015). <u>https://doi.org/10.1007/s11263-015-0816-y</u>.

[7] He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classication. In: Proceedings of the IEEE international conference on computer vision. pp. 10261034 (2015).

Tested Scenarios

Config.	Fine-Tuning	Different Learning Rates	Optimizer
А	No	No	RMSprop
В	No	No	Adam
С	Yes	No	RMSprop
D	Yes	No	Adam
Е	Yes	Yes	RMSprop
F	Yes	Yes	Adam

Sector SLION 95

- Scenarios A to D:
 - Adaptive learning rate: 10^{-3} to 10^{-5} .
 - Adjustment factor: 0.5 when validation accuracy did not increase in the last two epochs.
- Scenarios E and F:
 - Fixed learning rate:
 - Dense layers: 10^{-3} ; Convolutional layers: 10^{-5} .
- All scenarios:
 - Up to 50 epochs;
 - Early stop: validation loss did not decrease in the last 10 epochs.

Tested Scenarios

- **Software**: Python with TensorFlow.
- Hardware: 3 desktop computers equipped with NVIDIA GeForce GPU boards:
 - GTX 970;
 - GTX 1080;
 - RTX 2060 SUPER.
- The code is available at GitHub:
 - <u>https://github.com/fbreve/via-py</u>

- K-Fold Cross Validation:
 - k = 10
 - 5 repetitions
- Validation subset:
 - 20% of the training instances.
- Batch size: 16
 - Exceptions:

Method	Conf. C	Conf. D	Conf. E	Conf. F
EfficientNetB3			16 - 8	
EfficientNetB4	4	8	4	8
EfficientNetB5	2	4	2	4
EfficientNetB6	2	2	2	2
EfficientNetB7	1	1	1	1

Results: Single Networks

Method	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E	Conf. F	Average
MobileNet	0,9158	0,9152	0,9299	0,9257	0,8729	0,9105	0,9117
Xception	0,8749	0,8755	0,9374	0,9252	0,8934	0,9029	0,9016
EfficientNetB0	0,8877	0,8876	0,9427	0,9274	0,8724	0,8819	0,9000
EfficientNetB3	0,8901	0,8889	0,9404	0,9291	0,8727	0,8761	0,8995
EfficientNetB2	0,8725	0,8660	0,9391	0,9426	0,8672	0,8679	0,8926
EfficientNetB4	0,8813	0,8807	0,9304	<i>0,9456</i>	0,8414	0,8632	0,8904
EfficientNetB1	0,8908	0,8855	0,9369	0,9341	0,8482	0,8463	0,8903
DenseNet201	0,8841	0,8847	0,8847	0,8807	0,8696	0,8809	0,8808
InceptionResNetV2	0,8650	0,8644	0,8954	0,9217	0,8632	0,8668	0,8794
InceptionV3	0,8691	0,8657	0,8611	0,8965	0,8936	0,8807	0,8778
DenseNet169	0,8789	0,8766	0,8779	0,8854	0,8679	0,8713	0,8763
DenseNet121	0,8730	0,8671	0,8867	0,8912	0,8715	0,8680	0,8763
ResNet50	0,8947	0,8901	0,8139	0,8392	0,8801	0,8761	0,8657
ResNet101	0,8925	0,8919	0,8130	0,7919	0,8731	0,8626	0,8542
EfficientNetB5	0,8953	0,8947	0,8760	0,9233	0,6398	0,8327	0,8436
MobileNetV2	0,8924	0,8912	0,8324	0,7954	0,8116	0,8042	0,8378
ResNet152	0,8755	0,8754	0,7418	0,7724	0,8819	0,8638	0,8351
ResNet50V2	0,8539	0,8581	0,7273	0,8263	0,8516	0,8587	0,8293
EfficientNetB6	0,8719	0,8690	0,8514	0,8738	0,7383	0,7516	0,8260
ResNet101V2	0,8807	0,8790	0,6184	0,7256	0,8778	0,8779	0,8099
ResNet152V2	0,9106	0,9077	0,5942	0,6663	0,8890	0,8885	0,8094
VGG19	0,8263	0,8118	0,7916	0,6707	0,8746	0,8680	0,8072
VGG16	0,8263	0,8175	0,7877	0,6316	0,8759	0,8543	0,7989
NASNetMobile	0,8560	0,8578	0,6671	0,6997	0,7092	0,7050	0,7491
EfficientNetB7	0,8731	0,8714	0,5248	0,4999	0,5242	0,5230	0,6361
Average	0,8773	0,8749	0,8241	0,8289	0,8344	0,8433	0,8472

Ensembles

- Average of ensemble members for each of the 50 folds (k = 10, repeated 5 times).
 - Output of the last dense layer, before softmax, taken as probabilities for each class.
- The best model for each of the 6 configurations were used.
- Two ensemble experiments:
 - Multiple instances of the same model.
 - Randomized: seeds, initial weights, validation subset, etc.
 - From 1 to 10 instances of the best models in each configuration.
 - Best 2 to 6 configurations.

Results: Ensembles of Single CNN Models

Instances	Conf. A	Conf. B	Conf. C	Conf. D	Conf. E	Conf. F	Average
1	0,9158	0,9152	0,9427	0,9456	0,8936	0,9105	0,9206
2	0,9187	0,9135	0,9451	0,9502	0,9065	0,9170	0,9252
3	0,9170	0,9176	0,9445	0,9532	0,9112	0,9193	0,9271
4	0,9164	0,9158	0,9485	0,9562	0,9176	0,9182	0,9288
5	0,9187	0,9182	0,9491	0,9585	0,9171	0,9217	0,9306
6	0,9176	0,9199	0,9549	0,9602	0,9182	0,9199	0,9318
7	0,9211	0,9182	0,9543	0,9579	0,9211	0,9164	0,9315
8	0,9164	0,9158	0,9509	0,9596	0,9194	0,9158	0,9297
9	0,9182	0,9176	0,9538	0,9596	0,9200	0,9193	0,9314
10	0,9188	0,9159	0,9526	0,9602	0,9194	0,9176	0,9308
Average	0,9179	0,9168	0,9496	0,9561	0,9144	0,9176	0,9287

Results: Ensembles of Multiple CNN Models

Instances of each conf.	Conf. D	Conf. DC	Conf. DCA	Conf. DCAB	Conf. DCABF	All Conf.	Average
1	0,9456	0,9532	0,9567	0,9550	0,9503	0,9491	0,9517
2	0,9502	0,9491	0,9544	0,9538	0,9486	0,9521	0,9514
3	0,9532	0,9544	0,9597	0,9545	0,9509	0,9539	0,9544
4	0,9562	0,9555	0,9614	0,9527	0,9515	0,9556	0,9555
5	0,9585	0,9567	0,9620	0,9544	0,9544	0,9573	0,9572
6	0,9602	0,9579	0,9655	0,9562	0,9538	0,9556	0,9582
7	0,9579	0,9544	0,9643	0,9574	0,9544	0,9550	0,9572
8	0,9596	0,9532	0,9626	0,9562	0,9526	0,9573	0,9569
9	0,9596	0,9555	0,9637	0,9568	0,9568	0,9550	0,9579
10	0,9602	0,9561	0,9626	0,9556	0,9579	0,9550	0,9579
Average	0,9561	0,9546	0,9613	0,9553	0,9531	0,9546	0,9558

Conclusions

- Comparison of 25 different CNN architectures to identify obstacles in the path of visually impaired individuals.
- K-Fold Cross Validation was utilized with k = 10 and five repetitions to provide robust results.
- Architectures have low computational costs during inference, executing in milliseconds on current smartphones.
 - can be implemented without relying on external equipment or remote servers.
- Fine-tuning an EfficientNetB4 network achieved the highest accuracy of 0.9456.
 - Improved to **0.9602** using an ensemble with six instances of the same network.
 - Further increased to **0.9655** by adding six instances of fine-tuned EfficientNetB0 and six instances of MobileNet with fixed weights in the convolutional layers.

Conclusions

- The numerous computer simulations conducted in this study yielded promising results for some CNN architectures and investigated the use of:
 - different optimizers (Adam and RMSprop);
 - different learning strategies (single learning rate versus different rates for convolution and dense layers);
 - fixed versus fine-tuned pre-trained weights.
- Future work:
 - expanding the proposed dataset by acquiring more images;
 - exploring other approaches and modifications to the current framework to further enhance classification accuracy.

Convolutional Neural Networks and Ensembles for Visually Impaired Aid

Fabricio Breve

São Paulo State University - UNESP fabricio.breve@unesp.br

* (

Walvareldade do Minho Computers

Springer

