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Motivation 

 Data sets under analysis are no longer 
only static databases, but also data 
streams in which concepts and data 
distributions may not be stable over time. 

Examples:  
 Climate Prediction 

 Fraud Detection 

 Energy Demand  

 Many other real-world applications 

 



Motivation 

 Concept Drift 

 Nonstationary learning problem over time. 

 Learning algorithms have to handle conflicting 
objectives: 
 Retain previously learned knowledge that is still relevant. 

 Replace any obsolete knowledge with current information. 

 However, most learning algorithms produced so far 
are based on the assumption that data comes from a 
fixed distribution. 
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Motivation 

 Why Semi-Supervised Learning to handle concept 

drift? 

 Some concept drifts applications requires fast 

response, which means an algorithm must always be 

(re)trained with the latest available data. 

 Process of labeling data is usually expensive and/or 

time consuming when compared to unlabeled data 

acquisition, thus only a small fraction of the incoming 

data may be effectively labeled. 
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Proposed Method 

 Particles competition and cooperation in 
networks. 
Cooperation among particles representing the 

same team (label / class). 

Competition for possession of nodes of the 
network. 

 Each team of particles… 
Tries to dominate as many nodes as possible in a 

cooperative way. 

Prevents intrusion of particles from other teams. 

 



Initial Configuration 

 Each data item is transformed into an 
undirected network node and 
connected to its k-nearest neighbors. 

 A particle is generated for each labeled 
node of the network. 

 Particles with same label play for the 
same team. 

 When network maximum size is 
reached, older nodes are labeled and 
removed as new nodes are created. 

 When maximum amount of particles is 
reached, older particles are removed as 
new particles are created. 
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Initial Configuration 

 Particles initial position are 

set to their corresponding 

nodes. 

 Nodes have a domination 

vector. 

Labeled nodes have 

ownership set to their 

respective teams.  

Unlabeled nodes have levels 

set equally for each team. 
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Ex:  [ 1.00  0.00  0.00  0.00 ]   

(4 classes, node  

labeled as class A) 
 

Ex:  [ 0.25  0.25  0.25  0.25 ]  

(4 classes, unlabeled node) 
 



Node Dynamics 

 When a particle selects 

a neighbor node to visit: 

 It decreases the 

domination level of the 

other teams. 

 It increases the 

domination level of its 

own team. 
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Particle Dynamics 

 A particle gets: 

 stronger when it 
selects a node 
being dominated by 
its team. 

weaker when it 
selects node 
dominated by other 
teams. 
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Particles Walk 

Random-greedy walk 

 The particle will prefer visiting nodes that its team 

already dominates. 
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Particles Walk 

 Shocks 

A particle really visits the 

selected node only if the 

domination level of its team 

is higher than others;  

Otherwise, a shock 

happens and the particle 

stays at the current node 

until next iteration. 
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Computer Simulation 1 – Slow Concept Drift 

 50,000 data 
items. 

 500 batches. 

 100 data items in 
each batch. 

 Data items 
generated 
around 4 
Gaussian kernels 
moving 
clockwise. 

 100,000 particle 
movements 
between each 
batch arrival. 

 10% labeled data 
items, 90% 
unlabeled. 

 k = 5. 

 



Simulation 1: Slow Concept Drift. Correct Classification Rate with varying maximum network size (vmax) 

and maximum amount of particles (ρmax). n = 50,000. 

Computer Simulation 1 – Slow Concept Drift 



Simulation 2: Fast Concept Drift. Correct Classification Rate with varying maximum network size (vmax) 

and maximum amount of particles (ρmax). n = 10,000. 

Computer Simulation 2 – Fast Concept Drift 



Conclusions 

 New biologically inspired method for semi-supervised 
classification in nonstationary environments. 
 Specially suited for gradual or incremental changes in 

concept.  

 Passive concept drift algorithm. 
 Naturally adapts to changes. 

 No explicit drift detection mechanism.  

 Does not rely on base classifiers with explicit retraining 
process. 
 Built-in mechanisms provide a natural way of learning from new 

data, gradually “forgetting” older knowledge. 

 Single classifier approach. 
 Most other passive methods rely on classifier ensembles. 



Future Work 

 Build mechanisms to automatically select the 

parameters which control the sizes of the 

network and the set of particles, according to 

the data that is being fed to the algorithm.  

This could highly improve the performance of the 

algorithm in scenarios where the concepts may 

be stable for sometime and/or have different drift 

speeds through time.  
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