

Fabricio Breve - fbreve@gmail.com

- Questões que desafiam a ciência:
 - Como o cérebro processa informações?
 - Como ele é organizado?
 - Quais os mecanismos biológicos envolvidos no funcionamento do cérebro?

- Tarefas em que o cérebro é especialmente bom:
 - Reconhecimento de padrões
 - Controle motor
 - Percepção
 - Inferência flexível
 - Intuição
 - Adivinhação

- Pontos fracos do cérebro:
 - Lentidão
 - Imprecisão
 - Erros de generalização
 - Preconceito
 - Incapacidade de explicar suas próprias ações

- Neurocomputação
 - Do inglês:
 - Neurocomputing
 - Nuerocomputation
 - Frequentemente chamado:
 - Redes Neurais Artificiais (RNA)
 - Do inglês Artificial Neural Networks (ANN)

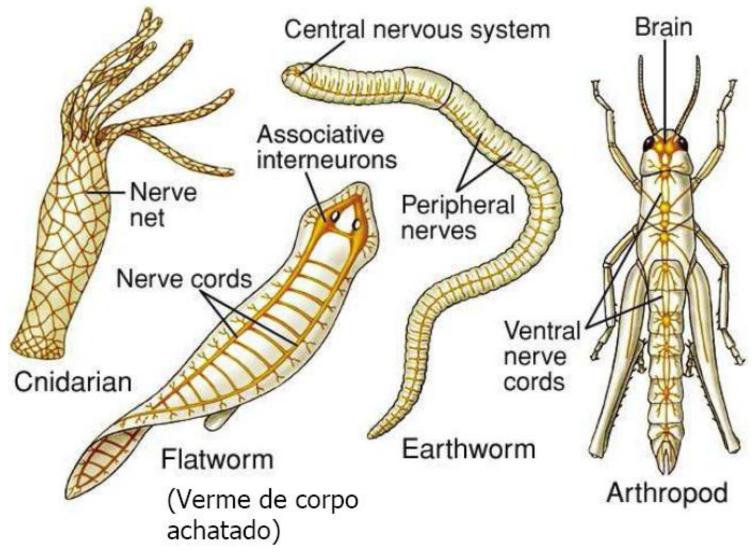
Definição:

- "Sistema de processamento de informação projeto com inspiração tomada do sistema nervoso, ou mais especificamente, do cérebro, e com particular ênfase na solução de problemas" [Castro, 2006]
- "Uma rede neural é um processador maciçamente paralelamente distribuído constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível para o uso." [Haykin, 2001]

- Neurociência Computacional
 - Concentra-se no desenvolvimento de modelos computacionais baseados no sistema nervoso biológico
- Redes Neurais Artificiais
 - Inspiração mais vaga no sistema nervoso e ênfase na capacidade de resolver problemas do sistema desenvolvido
 - Porém idéias de RNA são usadas na proposta de modelos mais biologicamente plausíveis na neurociência computacional.

- Neurônios
 - Acredita-se ser a unidade básica de computação no cérebro
 - Seu modelo abstrato simplificado é a base das redes neurais artificiais
 - Conectados uns aos outros por pequenas junções chamadas sinapses
 - Acredita-se que é a base para a maioria das tarefas cognitivas
 - Ex.: percepção, pensamento, inferência

O SISTEMA NERVOSO


- Organismos mais complexos têm vários sistemas funcionamento simultaneamente
- Para que organismo sobreviva
 - É necessário integração e controle destas múltiplas atividades
 - Sistema endócrino
 - Sistema nervoso
 - Integração e controle ocorrem pelo envio de mensagens

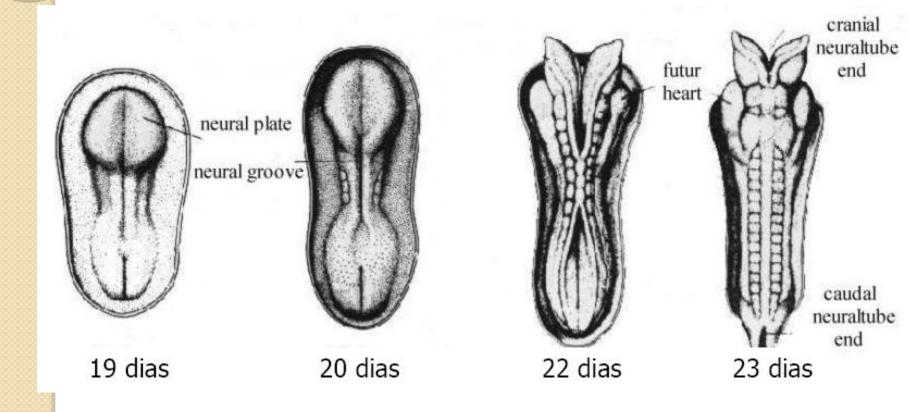
- Sistema endócrino
 - Envia mensagens de natureza química
 - Mensagens são distribuídas pelo corpo através da corrente sanguínea (hormônios)
 - Hormônios
 - · Pequena quantidade pode agir em várias células alvo
 - Uma vez secretados, permanecem atuando por um período de tempo
 - Existe um período de latência entre a produção do hormônio e execução da ação determinada
 - Produção, liberação e ação pode durar minutos

- Sistema nervoso
 - Envia mensagens de natureza eletro-química
 - Mensagens são distribuídas pelo corpo por meio de estímulos nervosos (neurônios)
 - Neurônios
 - Mensagem se propaga com grande velocidade
 - Ação é executada rapidamente
 - Impulso nervoso pode percorrer todo o corpo em centésimos de segundos
 - Consumo elevado de energia
 - Finalizado o estímulo, termina a ação

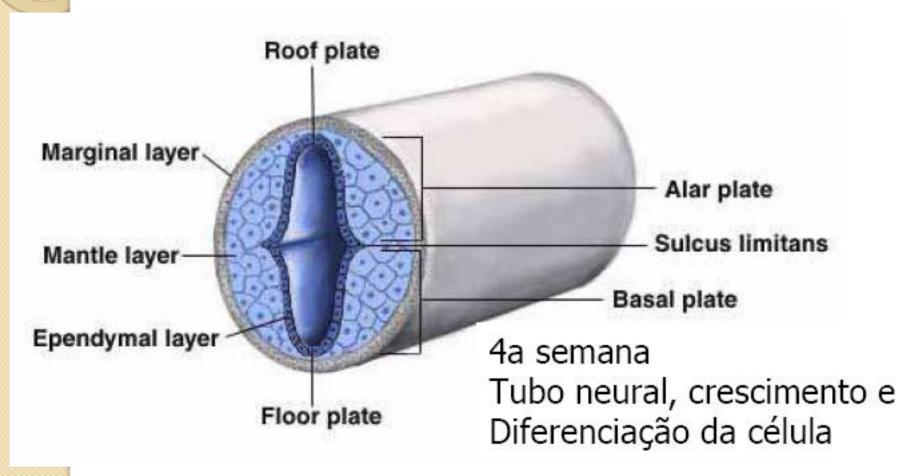
- Sistema nervoso
 - Conjunto complexo de células
 - Determina funcionamento e comportamento dos seres vivos
 - Unidade fundamental: célula nervosa (neurônio)
 - Distingue-se das outras células por apresentar excitabilidade
 - Possibilita transmissão de impulsos nervosos a outros neurônios e a células musculares e granulares
 - Presente em todos os vertebrados e na maioria dos invertebrados

Evolução

Cnidarian (água viva)

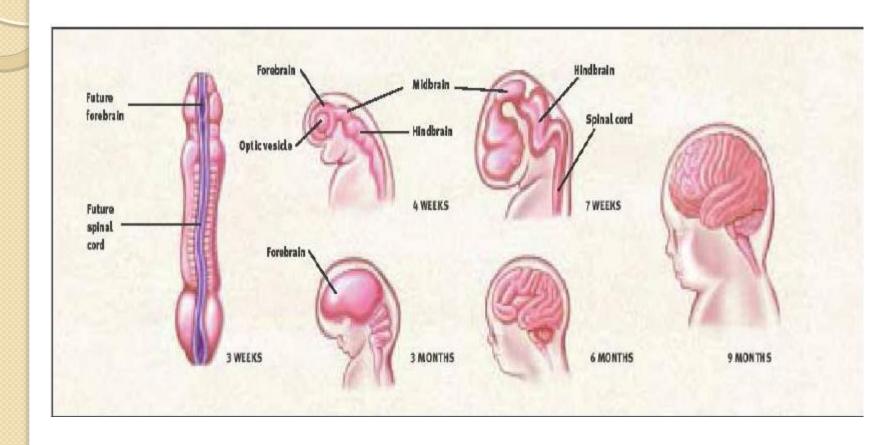


- Responsável por passar ao organismo informações sobre o ambiente em que vive e se movimenta
 - Através dos sensores de entrada
 - Relaciona as informações com experiências passadas, e transforma-as em memórias ou ações apropriadas
- Formado pela interconexão de muitos neurônios
 - Cada neurônio no cérebro humano tem da ordem de centenas a milhares de conexões


- Sistema nervoso divide-se em
 - Sistema nervoso periférico (SNP)
 - Sistema nervoso central (SNC)
- Sistema nervoso periférico (SNP)
 - Conecta o SNC a outras partes do corpo
 - Formado por:
 - Neurônios aferentes ou sensitivos transmitem ao SNC sinais vindos da periferia do corpo
 - Neurônios eferentes ou motores transmitem aos órgãos ordens dadas pelo SNC

- Sistema nervoso central (SNC)
 - Constituído por:
 - Medula espinhal
 - Neurônios de associação (interneurônios)
 - Encéfalo (massa de tecido nervoso contida na caixa craniana)
 - Forma-se nas primeiras fases da vida embrionária a partir de um tubo oco (tubo neural)
 - Durante desenvolvimento do feto, transforma-se em um conjunto de cinco vesículas

Tubo neural



Tubo Neural

- Processo de desenvolvimento
 - Neurônios são inicialmente produzidos ao longo do canal central do tubo neural
 - Esses neurônios migram do local de nascimento até o destino final no cérebro
 - Neurônios se juntam para formar cada uma das estruturas do cérebro
 - E adquirir caminhos específicos para transmitir mensagens nervosas
 - Seus axônios se expandem por longas distâncias
 - Para encontrar e se conectar com os parceiros adequados
 - Formando circuitos específicos e elaborados

- Processo de Desenvolvimento
 - Ação de refinamento elimina conexões impróprias ou redundantes
 - Mantendo a especificidade dos circuitos
 - Resultado: rede adulta precisamente elaborada composta por 100 bilhões de neurônios capazes de:
 - Mover o corpo
 - Percepção
 - Emoção
 - Cognição

- Um dos principais temas de pesquisa atuais é a (neuro)plasticidade do sistema nervoso
 - Plasticidade é capacidade do sistema nervoso em se adaptar sua estrutura como resultado de:
 - Amadurecimento
 - Mudanças físicas no cérebro que parecem corresponder a aprendizado e memória
 - Lesões
 - Quando ocorre uma lesão no cérebro, células nervosas assumem as tarefas daquelas que foram destruídas
 - Adaptação ocorre no sentido anatômico e funcional

- Existem duas formas de plasticidade
 - Uma no qual todos os neurônios já foram criados
 - Mudanças ocorrem apenas no número e no tipo das conexões
 - Outra está relacionado à neurogênesis adulta
 - Neurogênesis = geração de novas células nervosas

- Neurogênesis no sistema nervoso dos mamíferos
 - Final do século XIX
 - Cientistas concordavam que o cérebro adulto permanecia estruturalmente constante
 - Arquitetura do cérebro continuava aparentemente a mesma
 - Não havia evidência de mitose ou desenvolvimento de células
 - Primeira metade do século XX
 - Apareceram evidências de que nova células eram criadas logo após o nascimento

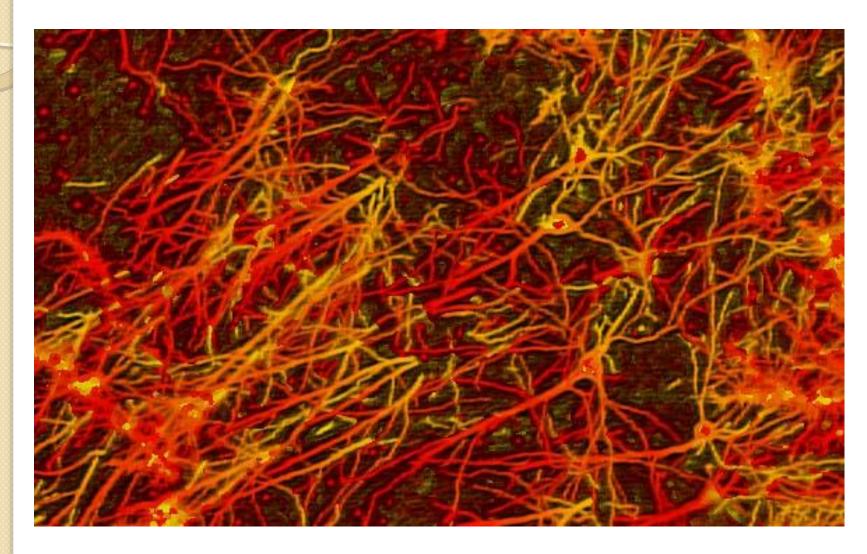
- Até recentemente acreditava-se que estava restrita aos períodos:
 - Embrionário
 - Início do pós-natal
- Após ter sua estrutura completa, o cérebro não gerava novos neurônios
- Atualmente, já se sabe que novos neurônios são gerados continuamente nos mamíferos adultos

- Início dos anos 1960
 - Joseph Altman, do MIT, relatou a existência de novos neurônios
 - Em várias estruturas de ratos jovens e adultos
 - Microneurônios
 - Neurônios granulares com axônio pequeno
 - Encontrados no neocórtex, bulbo olfativo, etc.
 - Foram considerados de grande importância no aprendizado e na memória

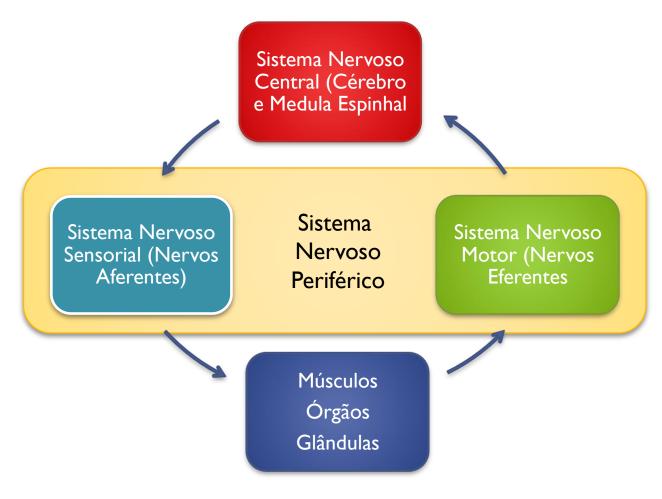
- Trabalho de Altman não foi bem aceito
 - Fazia apenas pós-doutorado no departamento de psicologia do MIT
 - Trabalhava por conta própria
 - Seus resultados desafiaram um conceito universalmente aceito na neurociência

- Estudos recentes:
 - Elizabeth Gould, da
 Universidade de
 Princeton
 - Relatou ter encontrado novos neurônios no córtex cerebral
 - Propôs que as memórias de um dado dia seriam registradas nos neurônios gerados naquele dia

- Estudos recentes:
 - Jonas Frisen, do Instituto
 Karolinska, na Suécia
 - Estudou a idade das células (incluindo neurônios)
 - Até 2005, havia testado apenas células do córtex visual
 - Células desta região têm exatamente a mesma idade que o indivíduo
 - Não são gerados novos neurônios nesta região após o nascimento (não em número significativo)

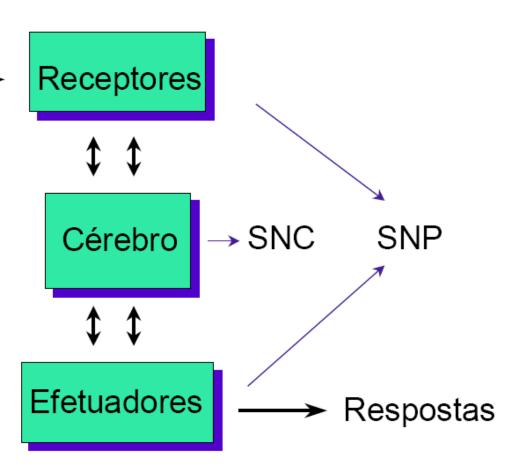

- As células do cerebelo são geralmente mais jovens que as do córtex
 - O que se encaixa na idéia de que o cerebelo continua se desenvolvendo após o nascimento

- Estrutura massivamente paralela (e conectada)
- Apresenta processamento hierárquico
 - Por causa da sofisticação da informação representada
 - Não significa que exista um fluxo de informação até o topo, sem envio de sinais para a base
 - Cerca de 45% das conexões do cérebro são conexões de feedback

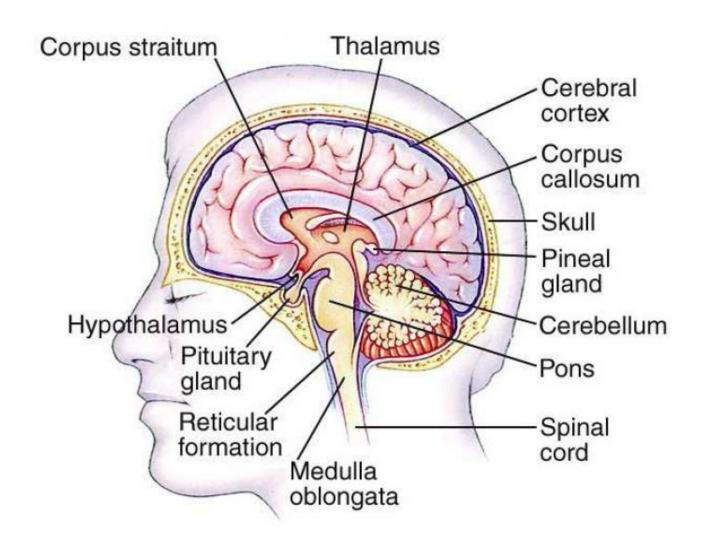

- Retro-alimentação
 - Existe um retro-alimentação entre os sistemas sensorial e motor
 - Ao nos movemos, ajustamos nosso movimento de acordo com nossas sensações
 - Também existe uma retro-alimentação dentro de cada sistema
 - Sensações são ajustadas por retro-alimentação do cortex

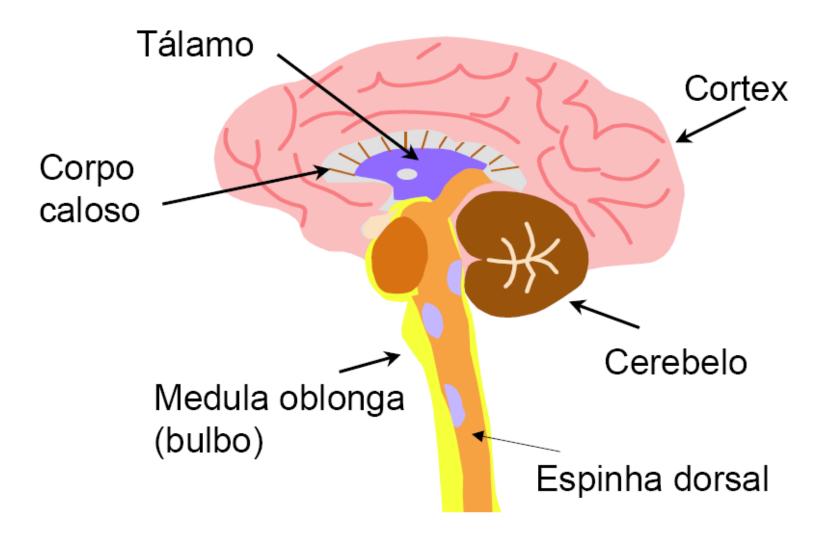
- Conexões top-down lidam com informações internas
 - O que sabemos e o que esperamos
- Conexões bottom-up lidam com informações externas
 - Informação que está sendo recebida do ambiente
 - E que deve ser interpretada pelo cérebro

- Existência de um grande número de conexões de feedback sugere que:
 - Informação recebida pelo cérebro é alterada pelo processamento top-down desde o início
 - Deve haver uma razão para estas conexões
 - Possível razão:
 - Para que a percepção (informação recebida) seja influenciada pelo que sabe e se espera que aconteça em seguida



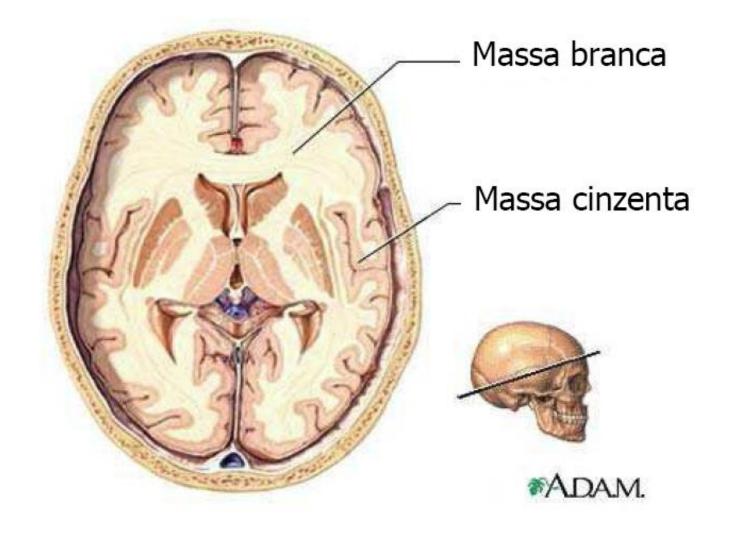
Organização do SN de vertebrados


Estímulos ---->


Sistema nervoso pode ser visto como um sistema de três estágios

- Funciona de forma inteiramente diferente dos computadores convencionais
 - Nos anos 1980, neurônios eram de 100 mil a I milhão de vezes mais lentos que portas lógicas de silício
 - Lentidão compensada por grande número de neurônios maciçamente conectados
 - Para certas operações, muito mais rápido que computadores convencionais
 - Visão, audição, controle e previsão

- Com sua estrutura, cérebro tem capacidade de construir suas próprias regras através da experiência
 - Cérebro humano
 - Um milhão de sinapses por segundo são desenvolvidas nos dois primeiros anos de vida
- Cérebro é composto por várias regiões especializadas

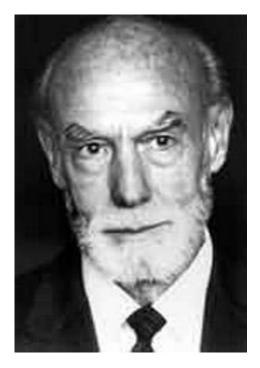

Tálamo

- O centro de transmissão de vias sensoriais mais importante
- Integra todas as entradas sensoriais (exceto olfato) antes de serem apresentados ao cortex
- Medula oblonga (bulbo)
 - Onde maioria dos nervos cranianos entra e sai do encéfalo
 - Também responsável por funções como respiração, batimento cardiáco, pressão arterial, visão e audição

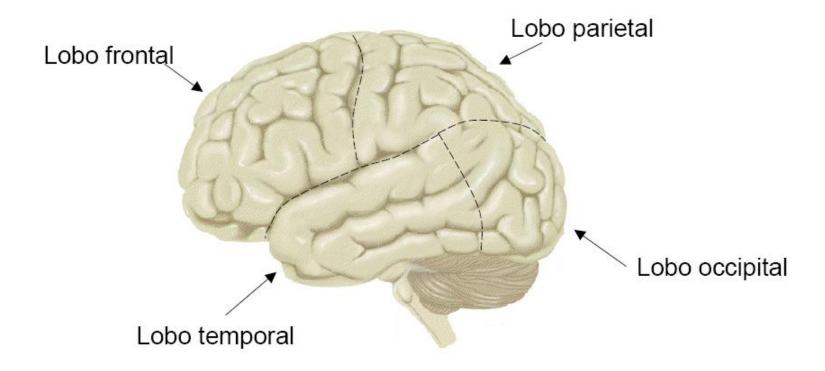
- Córtex
 - Principal área de processamento
 - Áreas motoras: produzem respostas motoras quando estimuladas eletricamente
 - Áreas sensitivas: Quando estimuladas, provocam efeitos sensoriais
 - Visão, paladar, tato, olfato e audição
 - Também responsável por:
 - Pensamento
 - Movimentos voluntários
 - Linguagem
 - Raciocínio
 - Percepção

- Hipotálamo
 - Logo abaixo do Tálamo
 - Responsável por integrar padrões de comportamento básicos
 - Correlação Neural
 - Funções Endócrinas
 - Associado a emoções

- Cerebelo
 - Coordenação de atividades motoras e manutenção da postura
 - Dados vêm de duas fontes principais
 - Área auditiva do bulbo
 - · Sistema de receptores existentes nos músculos e tendões
- Corpo caloso
 - permite a união dos recursos de memória e aprendizado dos dois hemisférios



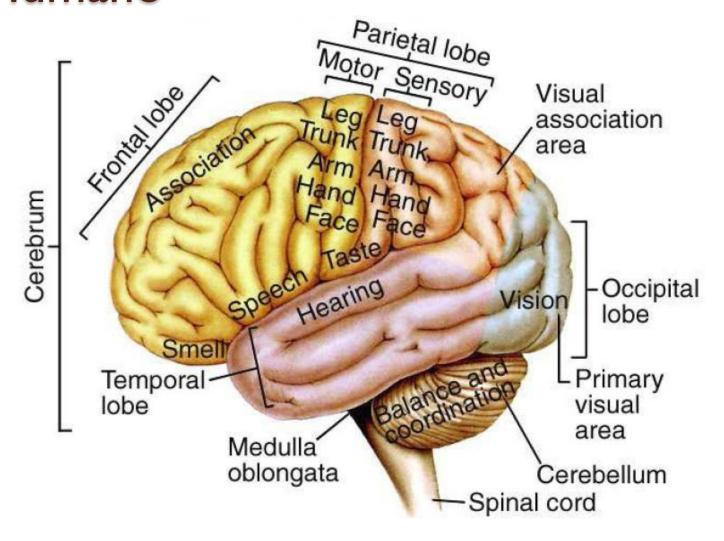
- Massa cinzenta
 - Centros de processamento de informação
 - Maior volume em autistas
 - · Principalmente no hemisfério esquerdo
 - Define QI
- Massa branca
 - Conexões entre os centros
 - Transmissão de informação
 - Comunicação entre a massa cinzenta e resto do corpo


- Pesquisa feita na Universidade do sudeste da Califórnia com 49 pessoas
 - Pacientes mentirosos patológicos tinham 22%
 a 26% a mais de massa branca no cérebro
 - Quantidades de matéria branca e cinzenta no córtex pré-frontal do cérebro
 - Determinadas por ressonância magnética
 - Conclusão: mais massa branca no córtex préfrontal estimula a mentira

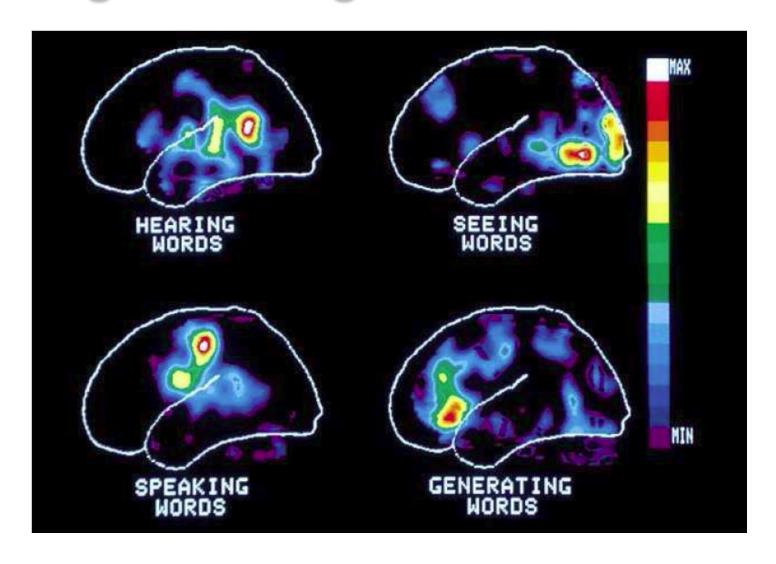
- Dividido em dois hemisférios
 - Simétricos
 - Maioria das funções do lado direito do corpo são controladas pelo lado esquerdo e viceversa

- Teoria de Sperry
 - Hemisfério esquerdo
 - Busca ordem, organização
 - Lógico, racional
 - Percepção visual, raciocínio espacial
 - Hemisfério direito
 - · Percebe padrões, enfatiza intuição
 - Emoção
 - Linguagem
 - Prêmio Nobel em 1981

- Dividido em quatro lobos:
 - Frontal
 - Parietal
 - Occipital
 - Temporal

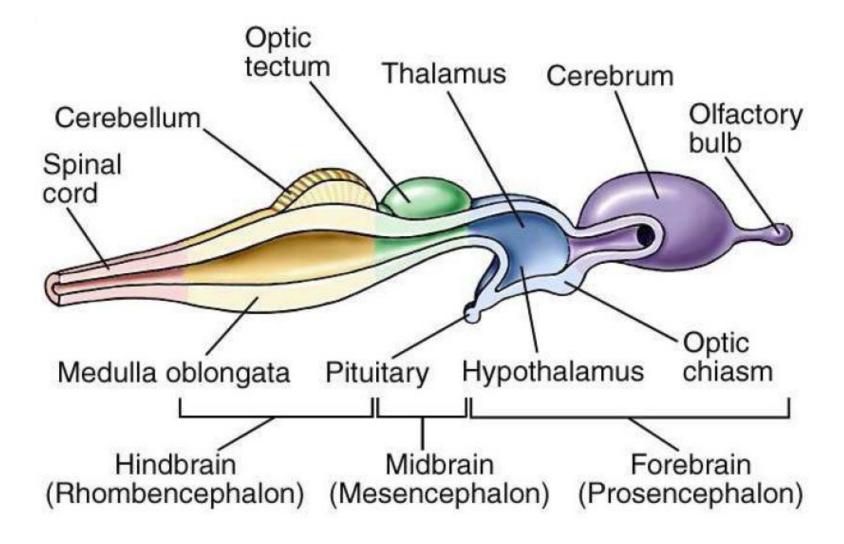


- Lobo occipital
 - Recebe e analisa informação visual
- Lobo temporal
 - Relacionado à audição

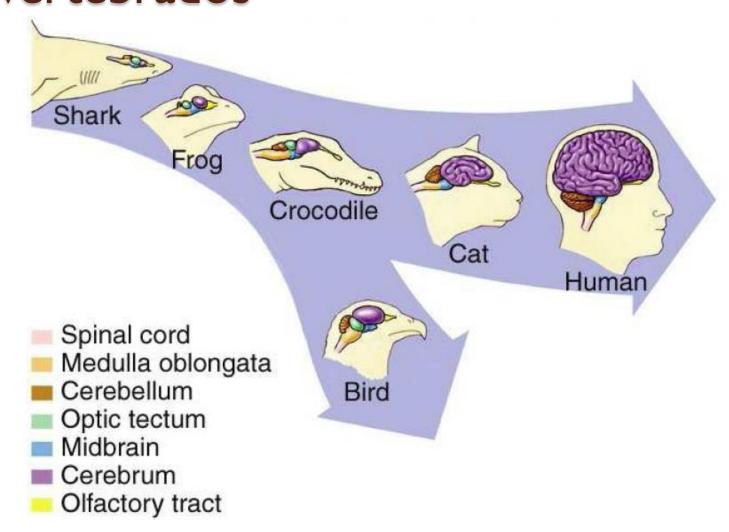

- Lobo frontal
 - Regula controle motor
 - Incluindo movimentos envolvidos na fala
 - Porta de entrada para estímulos sensoriais
- Lobo parietal
 - Recebe estímulo dos órgãos sensoriais da pele
 - Informa a postura

- Funções particulares podem ser atribuídas a determinadas regiões do cérebro
 - Coleção de centros de processamento para tarefas específicas
 - Conectados por vias (feixes de fibras nervosas nervos)
 - Neurônios com funções semelhantes são agrupados juntos
 - · Neurônios são arranjados de forma hierárquica

Regiões Funcionais do Cérebro Humano



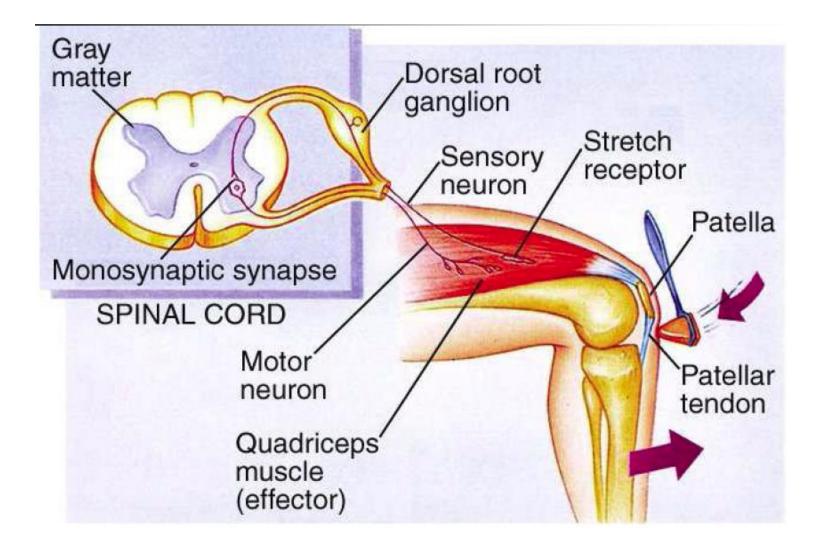
Imagens Tomográficas



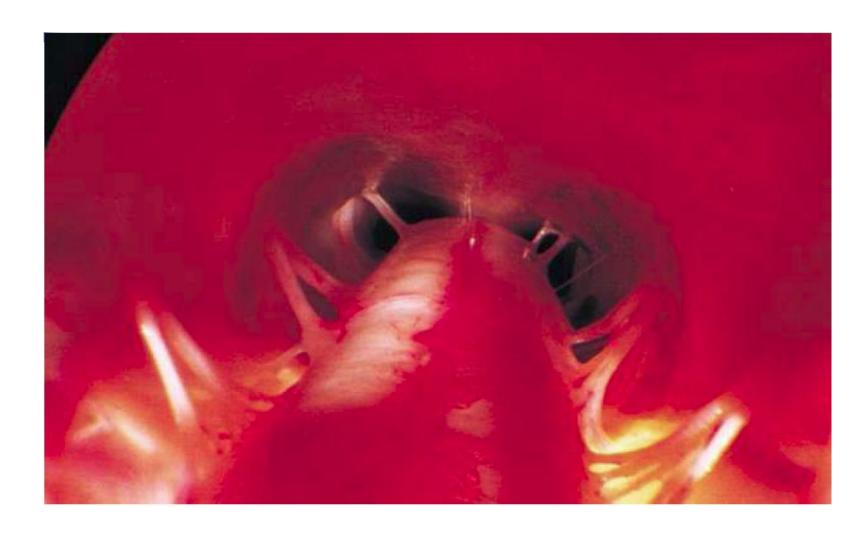
- Principais características
 - Adaptável
 - Tolerante a falhas
 - Plasticidade
 - Redundância
 - 100 bilhões de neurônios, cada um conectado a até 10.000 outros neurônios
 - Estrutura básica dos seres humanos

Cérebro de peixe primitivo

Evolução do Cérebro dos Vertebrados


Sistema Nervoso Central

- Envolvido por um sistema de 3 membranas
 - Meninges
- Protegido por estrutura óssea
 - Cérebro: caixa craniana
 - Medula espinhal: coluna vertebral


Medula Espinhal

- Via de passagem para
 - Impulsos aferentes dos receptores sensoriais para o encéfalo
 - Impulsos eferentes do encéfalo para os músculos ou glândulas
- Responsável por algumas atividades de reflexo

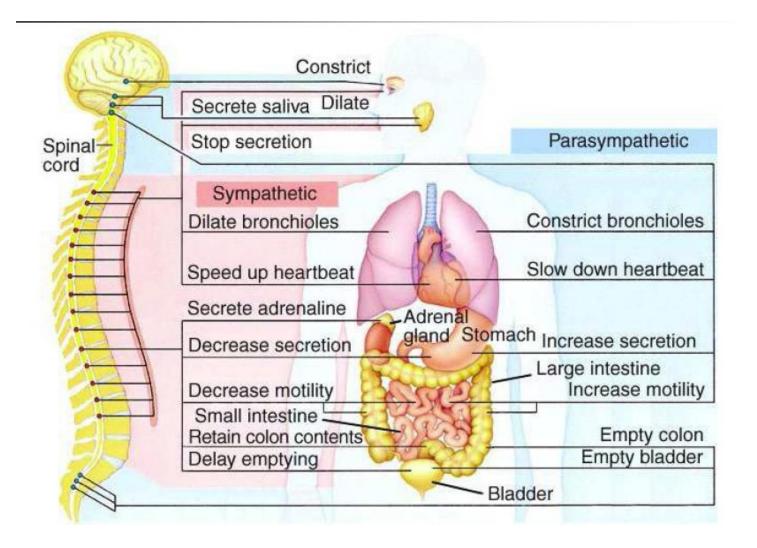
Reflexo do Joelho

Medula espinhal humana

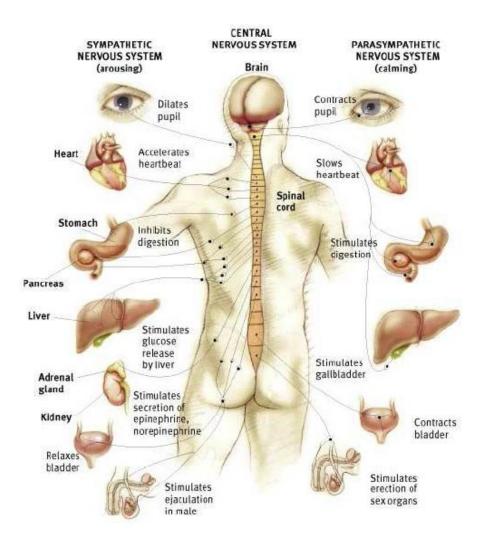
Medula espinhal

- Fratura da coluna vertebral com lesão da medula espinhal
 - Desconecta dos níveis superiores do SNC às terminações nervosas abaixo da lesão
 - Perda da atividade voluntária e sensibilidade
 - Atividade de reflexo é preservada
 - Depende dos neurônios localizados na medula espinhal

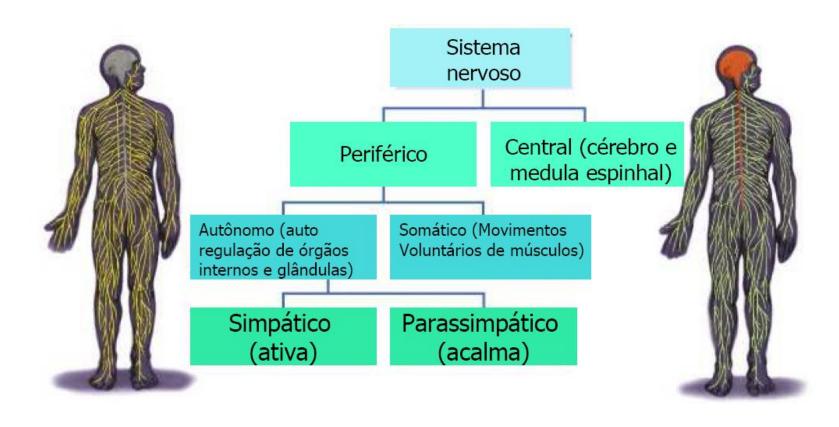
Medula espinhal humana

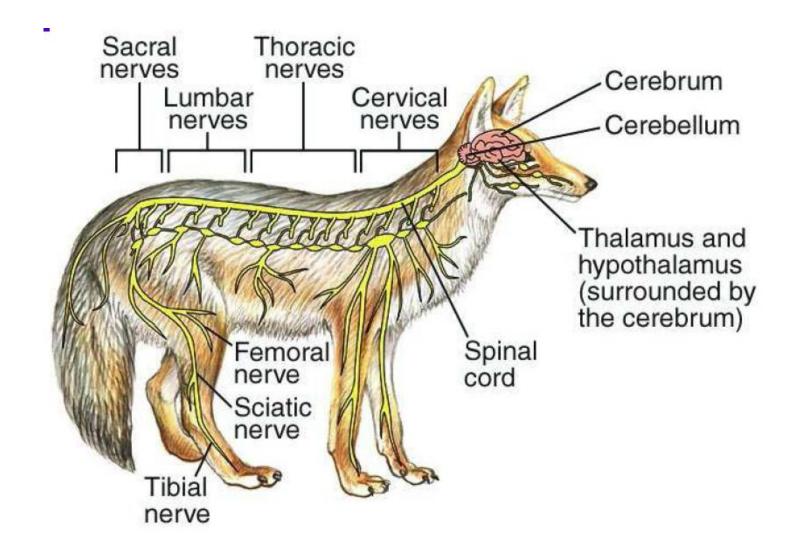

- Poliomielite (paralisia infantil)
 - Causada por um vírus que destrói determinados grupos de neurônios motores
 - Localizados na medula espinhal
- Perda das atividades voluntária e de reflexo
 - Preserva sensibilidade

- Sistema nervoso periférico (SNP)
 - Sistema nervoso somático (voluntário)
 - Controla movimentos musculares voluntários
 - Sistema nervoso autônomo (involuntário)
 - Sistema simpático
 - Sistema parassimpático
 - Antagônicos

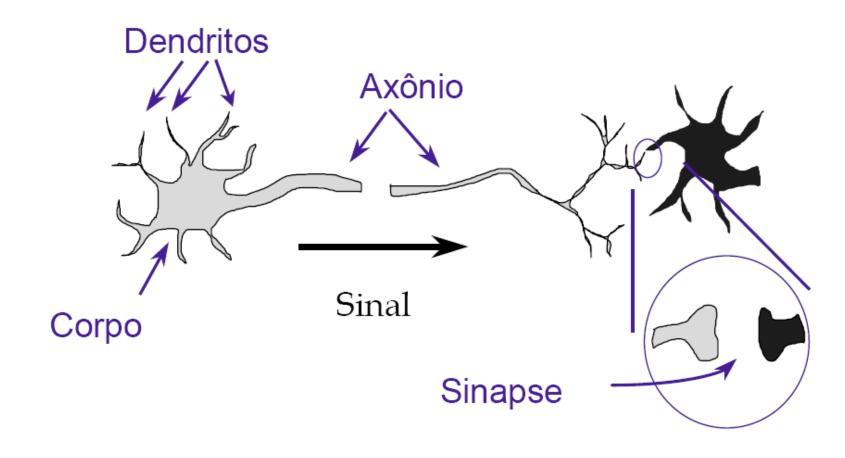

Sistema Nervoso Periférico

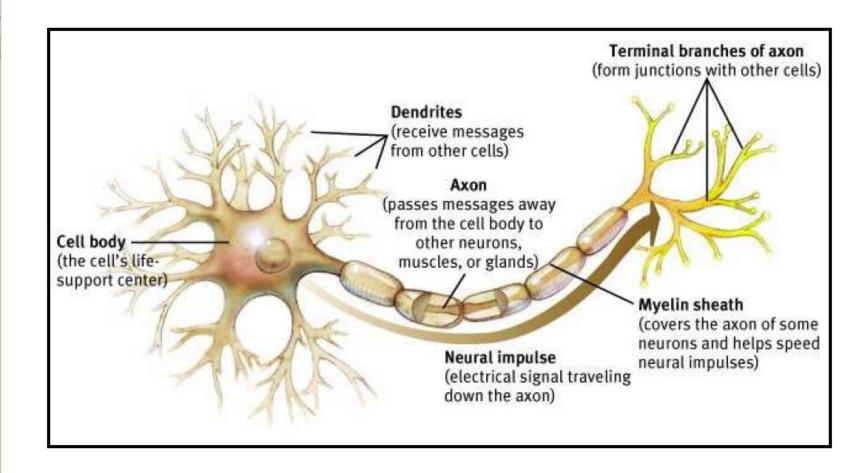
- Sistema simpático
 - Ação
 - Lutar, fugir
 - Prepara o corpo para situações de emergência
 - Acelera coração, aumenta pressão sanguínea, aumento de adrenalina
- Sistema parassimpático
 - Conservação
 - manutenção das funções vitais
 - Mantém funções realizadas em períodos de calma
 - Comer, urinar, atividade sexual


SNP Simpático X Parassimpático


SNP Simpático X Parassimpático

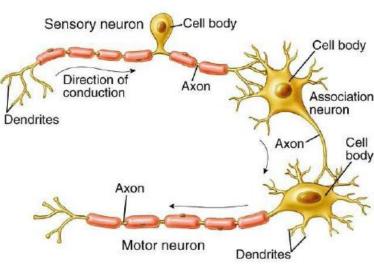
Sistema Nervoso




Sistema Nervoso dos Vertebrados

Neurônios (células nervosas)

- Principais componentes
 - Corpo celular
 - Dendritos
 - Recebem informações de outros neurônios
 - Axônio
 - Transmite informação para outros neurônios
 - Feixes de axônios = nervos
 - Neurônios recebem suporte nutricional de células neurogliais


 Existem neurônios com vários formatos e tamanhos diferentes

Responsáveis pela complexidade do

cérebro

Tipos de neurônios

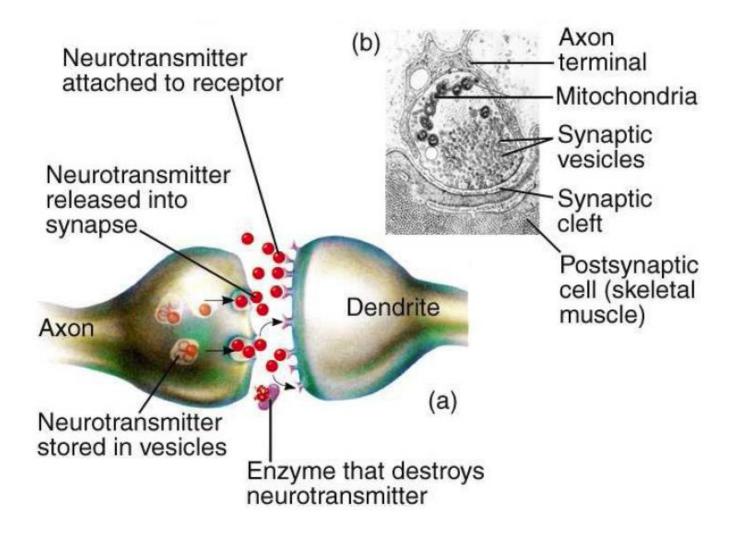
- Neurônios sensoriais
- Neurônios motores
- Neurônios associativos

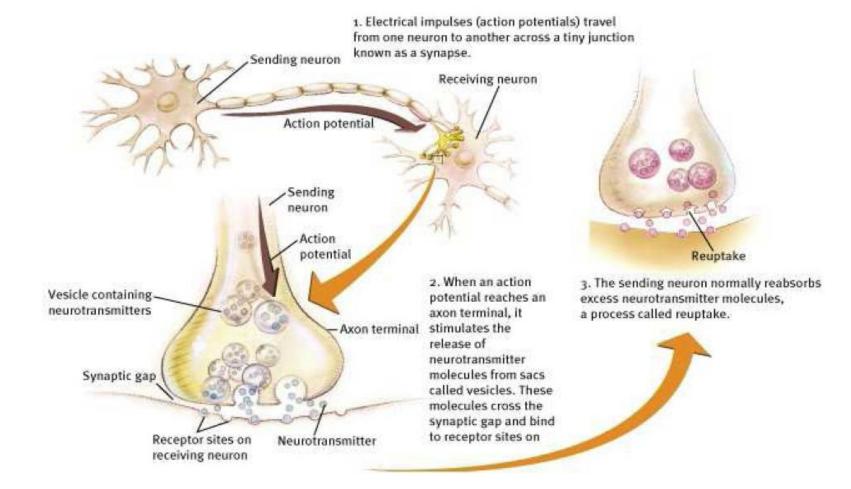
- Maior parte do corpo celular se encontra no:
 - Sistema nervoso central
 - Cérebro
 - Medula espinhal
 - Gânglios
 - Aglomerados de corpos celulares de neurônios localizados fora do sistema nervoso central
 - Aparecem como pequenas dilatações em certos nervos
- Prolongamentos se distribuem pelo corpo em feixes (nervos)

Processamento de Informações

- Processo eletro-químico
 - Transmissão de impulsos nervosos dentro do neurônio é um processo de natureza elétrica
 - Sinais viajam através dos axônios em forma de potenciais de ação (potenciais elétricos breves)
 - Transmissão sináptica se faz por um mecanismo de natureza química
 - Por meio da ação de neurotransmissores

Transmissão de Pulsos


- Dentro de um neurônio, as mensagens fluem dos dendritos para o axônio
 - Disparo do axônio depende da soma algébrica (frequência) de pulsos recebidos
 - Saídas são Pulsos (potenciais de ação ou spikes)
 - Neurônio dispara quando a soma de pulsos recebidos em um dado período supera um valor
 - limiar de ação


- Região onde dois neurônios entram em contato
 - Onde os impulsos nervosos são transmitidos de neurônio para neurônio
- Axônio ⇒ dendritos
- Efeito
 - Excitatório: estimulam ação do neurônio
 - Inibitório: efeito contrário

- Cada pulso que ocorre em uma sinapse inicia liberação de neurotransmissores
 - Substâncias químicas
 - Viajam através de fendas de sinapses
 - Recebidos nos locais receptores póssinápticos dos dendritos
 - Modificam o potencial da membrana dos dendritos (potencial pos-sináptico, PPS)

- Potencial pós sináptico
 - Aumenta polarização na membrana pós sináptica (hiperpolariza)
 - · Inibe geração de pulsos pelo neurônios receptor
 - Reduz polarização na membrana pós sináptica (despolariza – polarização inversa)
 - · Estimula geração de pulsos pelo neurônios receptor

- Potencial pós-sináptico (continuação)
 - Tamanho e tipo de PSP produzido depende de:
 - Geometria da sinapse
 - Tipo de neurotransmissor
- Foram descobertos, até o início da década de 90, cerca de 50 eurotransmissores diferentes
 - Cada um produz um efeito diferente

- Comunicação entre neurônios
 - Raramente é necessário ultrapassar três sinapses no interior do cérebro
 - Com quatro sinapses, praticamente qualquer neurônio em qualquer local pode se comunicar com qualquer outro
- Percepção, maioria das recuperações de memória, boa parte do processamento de linguagens e raciocínio intuitivo ocorrem em não mais que 100 passos seriais

Conexões do sistema nervoso

- Alto grau de precisão e especificidade
- Estabelecimento das conexões
 - Nativismo: conexões são definidas geneticamente
 - Empirismo: conexões são determinadas pela experiência
 - Combinação das duas correntes

Características

- Seres humanos desenvolvem células nervosas até os dezoito meses
 - Conexões são estabelecidas até os três anos
- Seres humanos perdem 10³ células por dia
 - Aos 70 anos 2,5% de células a menos que aos 10 anos
 - Plasticidade no cérebro adulto
 - Criação de novas sinapses
 - Modificação das sinapses existentes
 - Criação de novos neurônios

Neurônio

 Pode ser visto como um dispositivo capaz de receber diversos estímulos de entrada de muitos outros neurônios e propagar sua saída única para muitos outros neurônios

- Neurônios tem conexões adiante (forward) e de realimentação (feedback)
- Um milimetro cúbico do tecido do córtex contém aproximidamente:
 - 10⁵ neurônios
 - 10⁹ sinapses
 - A maioria delas fazendo conexões entre neurônios do córtex
 - Interconectividade bastante alta

- Pequeno grupo de neurônios interligados pode apresentar comportamento complexo
 - Que não pode ser observado em um único neurônio
 - Características
 - Representação de informação (conhecimento) de maneira distribuída
 - Processamento paralelo dessas informações

- Muitas áreas do cérebro apresentam organização em camadas
 - Cada camada tem um padrão regular de
 - De onde recebe informações
 - Para onde envia essas informações
- Exemplo:
 - Superior Colliculus
 - Recebe entradas visuais nas camadas superficiais
 - Recebe entradas táteis e auditivas nas camadas mais profundas
 - Neurônios nas camadas intermediárias representam informações dos movimentos dos olhos

• Estudos mostram que áreas do Córtex tem diferentes funções

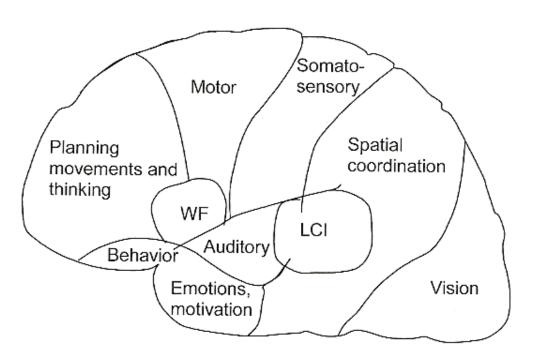


Figure 4.5: Map of specific functional areas in the cerebral cortex. WF: word formation; LCI: Language comprehension and intelligence.

- Em geral, é sabido que neurônios do córtex podem ser subdivididos em seis camadas distintas:
 - · Camada de entrada
 - Recebe entrada sensorial
 - Camadas ocultas
 - Recebe entradas localmente de outras camadas do cérebro
 - Não recebem estímulo sensorial diretamente, nem produzem saída motora
 - Camada de saída
 - Envia comandos e saídas para outras partes do cérebro

- Mapa Topográfico
 - Princípio de organização de muitos sistemas sensoriais e motores
- Exemplo
 - Neurônios das áreas visuais do córtex
 - Arranjados de maneira que neurônios adjacentes tem campos de recepção visuais adjacentes e juntos constituem o mapa da retina
- Unidades sensoriais vizinhas se destinam a representações similares
 - Maneira do cérebro economizar em cabeamento

- Sistema Nervoso está continuamente se modificando e se atualizando
 - Todas as funções (incluindo percepção, controle motor, termoregulação, raciocínio) são modificáveis por experiências
 - Observações de comportamento mostram graus de plasticidade do sistema nervoso:
 - Mudanças fáceis e rápidas
 - Modificações lentas e profundas
 - Mudanças mais permanentes, mas ainda modificáveis

- Aprendizado Global
 - Resultado de mudanças locais nos neurônios
 - Crescimento de novos dendritos
 - Extensão dos ramos existentes
 - Mudanças nas sinapses existentes
 - Criação de novas sinapses
 - Poda de dendritos
 - Eliminação de sinapses
 - Mudanças nos axônios
 - Produção de novos neurotransmissores
 - E muitos outras...

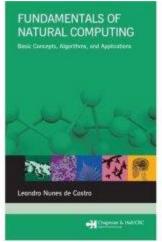
- Podemos resumir as mudanças estruturais como modificações nas sinapses
 - Estão envolvidas direta ou indiretamente em toda modificação
 - → Aprendizado por modificações sinápticas
 - · Muito importante nas redes neurais biológicas e artificiais
 - Conexões sinápticas podem ser reforçadas ou enfraquecidas
 - Modificação na força da sinapse (eficiência sináptica)

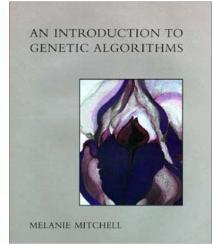
- Memória
 - Também é um processo adaptativo de conexões sinápticas
 - Memórias podem ser classificadas em três tipos:
 - Memória de curto prazo
 - Dura de poucos segundos a poucos minutos
 - · Exemplo: memória de um número de telefone
 - Memória de prazo intermediário
 - Dura de minutos a semanas
 - Exemplo: nome de alguém interessante que você conheceu em uma festa
 - Memória de longo prazo
 - Dura por tempo indeterminado
 - Exemplo: o endereço de sua casa

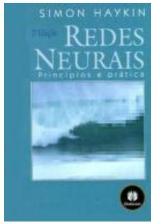
- Os dois primeiros tipos não requerem muitas mudanças nas sinapses
- Memória de longo prazo
 - Acredita-se que requer mudanças estruturais nas sinapses
- Diferença entre aprendizado e memória é apenas conceitual
 - Aprendizado: processo que resulta em mudança na eficiência sináptica
 - Memória: resultado (duradouro) deste processo adaptativo

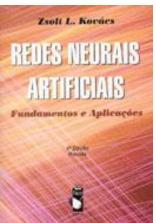
Sumário

- Sistema Nervoso
 - Um dos maiores sistemas de controle nos organismos vivos
 - Responsável por receber um estímulo do ambiente, processá-lo e produzir uma resposta
 - Influenciou bastante no projeto de ferramentas computacionais para resolver problemas que usam elementos semelhantes a neurônios como unidades de processamento
 - · Conforme veremos na próxima aula


Questões


- Classifique os tópicos abaixo como fato ou ficção (argumente em favor de sua classificação e cite trabalhos da literatura que suportem sua opinião):
 - Nós usamos apenas 10% do potencial de nossos cérebros
 - O número de neurônios com que nascemos será o número de neurônios com que morreremos
 - Neurônios não podem se reproduzir
 - Homens tem mais neurônios que mulheres
 - Mulheres tem uma visão periférica mais ampla que homens


Referências Bibliográficas


- CASTRO, Leandro Nunes.

 Fundamentals of Natural
 Computing: Basic Concepts,
 Algorithms, And Applications. CRC
 Press, 2006.
- CARVALHO, André Ponce de Leon F. de. Notas de Aula, 2007.
- HAYKIN, Simon. Redes Neurais: Princípio e Prática. Bookman, 2001.
- KOVACS, Zsolt L. Redes Neurais
 Artificiais: Fundamentos e
 Aplicações. Livraria da Física, 2006.
- MITCHELL, Melanie. An Introduction to Genetic Algorithms. MIT Press, 1998.

